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Summary. Strong deformation and fracture are very difficult to describe using macroscopic continuum methods. Lack of a material 
continuousness makes description of such processes to be a serious challenge. In the presented paper the onset of the material 
fracture is studied from both micro- and macroscopic points of view. First an ideal infinite crystal lattice is considered. Transfer from 
microstructure to continuum mechanics is made using long-wave approximation. This allows obtaining nonlinear continuum 
equations of the infinite crystal under finite uniform deformation. These equations are found without limitation to the space 
dimension. For the stability verification a small deformation is superposed to a finite deformation of the crystal lattice being 
described by the obtained nonlinear macroscopic equations. Criterions of the material stability and their relevance to the crystal 
structure are obtained.  

 
INTRODUCTION 

 
A lot of facts give evidence about crucial role of the internal structure in the processes which attend deformation. That 
is why an influence of the material structure to its mechanical behavior requires a serious attention. Most of classic 
continuum methods have serious problems describing strong deformation and fracture, because the material is not 
really continuous in this case. 
Generally the microstructure can be considered by the following three ways. The first way is to analyze microstructure 
and obtain stability criterion for the crystal cell [1] using microscopic equations for the atoms motion. The second way 
is to compute deformation and fracture processes using molecular dynamics method [2, 3, 4, 5, 6]. The third way is to 
consider the microstructure in the classic continuum mechanics equations, in other words make transfer from the 
microstructure to continuum mechanics [7, 8, 9]. In the presented paper we will follow the third way and then use the 
continuum mechanics methods to analyze stability of the material under finite deformation. 

 
METHODS AND ANALYSIS 

 
The material is represented as an infinite crystal. The dynamics of the particles (atoms) forming the crystal is described 
by Newtonian equations of motion, where each particle is interacting with the other particles via prescribed potential 
interaction forces. Transfer from microstructure to continuum mechanics is made using long-wave approximation [7, 
10]. This allows obtaining nonlinear continuum equations of the infinite crystal in the Piola [11] form 
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where ρ  is the material density in the reference configuration, u is the displacement vector, 
o
∇  is the vector 

differential operator in the reference configuration, P  is the Piola stress tensor, which can be expressed in the terms of 

the microscopic parameters as following [7] 
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where *v  is the volume of the elementary crystal cell in the reference configuration; αa is the vector from the current 

particle to the particle number α  in the reference configuration; αA  is the vector αa  in the actual configuration;  
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where ( )rП  is the pair potential of interaction between the particles, which is a function of the distance between the 
particles. These equations are valid for both 2D and 3D considerations. 
 
For the stability verification a small deformation is superposed to a finite deformation of the crystal lattice being 
described by the obtained nonlinear macroscopic equations. As a result the system of equations in variations can be 
obtained. Criterions of the material stability and their relevance to the crystal structure are obtained and will be 
presented in the lecture. Instability is considered as non-oscillation motion of the crystal lattice. 

 



 

CONCLUSIONS 
 
Using long-wave approximation it is possible to consider interaction only within a limited vicinity of the current 
particle. However, using the presented method it is possible to take into account not only the nearest neighbors, but as 
many coordination shells as needed. Thereby this method can describe materials for which the interaction between the 
particles decreases relatively slowly with respect to the distance between them.  
The material is represented as an infinite crystal. Consequently in the paper the influence of the boundary effects and 
material imperfections is neglected. But in spite of these rude assumptions the method allows describing the important 
feature of all materials — stability loss under strong deformations in correlation with the material microstructure, which 
is difficult to describe using purely continuum considerations.  
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