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Abstract

The two-dimensional sloshing problem is considered in a half-plane covered by a rigid
dock with two symmetric gaps. It is proved that the antisymmetric (symmetric) sloshing
eigenvalues are monotonically decreasing (increasing) functions of spacing between gaps and
formulae for their derivatives are obtained.

sloshing problem / eigenvalue / eigenfunction / integral operator / asymptotic
formula

Résumé. Les oscillations libres d’une fluide dans un demi-plan sous un couvercle rigid
avec deux ouvertures: la monotonie des valeurs propres

oscillations libres d’une fluide / valeur propre / fonction propre / opérateur intégral /
formule asymptotique

1 Introduction

Sloshing problem in a half-plane covered by a rigid dock with a single gap has received much
consideration (see [2] and references cited therein) because eigenvalues of this problem furnish uni-
versal upper bounds for sloshing frequencies in the two-dimensional domains having the same free
surface. The aim of the present note is to consider the problem for a dock with two symmetric gaps
and to establish that the corresponding eigenvalues are monotonic functions of spacing between
gaps. Some other properties of eigenvalues are also obtained.

Let an inviscid, incompressible, heavy fluid occupy the half-plane y < 0 and be covered by a
rigid dock so that the free surface consists of two gaps {b < |z| < b+ 1, y = 0} (it is convenient
to use non-dimensional Cartesian coordinates such that each gap has a unit length). Neglecting
the surface tension, we consider free, small-amplitude, time-harmonic oscillations of fluid and its
motion is assumed to be irrotational. Since the fluid domain is symmetric about the y-axis, sloshing
modes are either symmetric or antisymmetric, that is, are even or odd functions of = respectively,
and so we restrict our considerations to the quadrant {x > 0, y < 0}.

2 Antisymmetric modes

In the present section, we are concerned only with antisymmetric modes, and the correspond-
ing boundary value problem for a time-independent velocity potential u(~)(x,y) (without loss of
generality, u(~) can be assumed to be a real function) is as follows:

v2u(7) =0, x>0, y<O0, 1)
u™) =0, z=0, y <O, 2)
W) =0, O0<az<b z>b+1 y=0, (3)

(4)

ug_)—y(_)u(_)zo, b<x<b+1, y=0.
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Our aim is to investigate properties of eigenvalues (=) (b) and eigenfunctions u(~) (z, y; b) (sloshing
modes) as functions of b, but, unless it is necessary, we do not indicate this dependence for the sake
of brevity. Solutions to (1)—(4) are sought in the natural class of functions having finite kinetic

energy, that is,
0 “+o0
/ / |V |2 dz dy < co. (5)
—oo0 JO0

This condition provides that u(~) is continuous up to the z-axis and Vu(~) has a logarithmic
singularity at the dock tips (an asymptotic formula representing u(~) near the tips can be obtained
using methods described in [4]).

PROPOSITION 1. — By virtue of

b+1 2 2
(g ) = L (e (@+8& +y

(1)=(5) is equivalent to the following spectral problem:

y(_) 1
w(@) = | [log(a+&+26) ~log|e —&|| w(©)ds, @€ (0.1), (7)
0

where the integral operator K in the right-hand side is a compact, selfadjoint, positive operator
in Ly(0,1). The null-space of K= is trivial.

In order to prove the equivalence of (1)—(5) and (7), one has to use properties of the single layer
potential (6). The triviality of the null-space follows from the inversion formula obtained in [3].

Applying known results for weakly singular, selfadjoint, positive, integral operators including
Jentsch’s theorem (see, for example, [8], sect. 20), one immediately arrives at the following

COROLLARY 1. — For a fized b > 0, there exists a sequence of eigenvalues
0< v\ <l <... <1/T(L_) <... such that VT(L_) — 00 as n — oo;

1s simple and the corresponding eigenfunction w(_)(

the eigenvalue ) x) is continuous and non-

negative in [0,1].

Further results on the simplicity of eigenvalues are formulated in Proposition 7. Since K(—)
depends on b > 0 continuously and the kernel of K(~) is a monotonically increasing function of b,
the known results (see, for example, [7], sect. 95) lead to the following

PROPOSITION 2. — For each n = 1,2,..., either ) and wgf)(x) are continuous functions of
b>0, and w(f) decreases with b.

Quantitatively, the rate of decreasing is characterized as follows.

PROPOSITION 3. — For eachn=1,2,..., the identity

(-) 0 b+1
dv. / _ 2
=— 8zu7(1)0,y dy//
db oo ( )‘ b

ul)(z,0)| dz, b>0.

‘ 2

holds.
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The proof of this proposition is similar to that of Proposition 6 below. More information can
be obtained for large values of b.

PROPOSITION 4. — (i) As b — oo, the asymptotic formulae are valid:

S log(2b) + 3 +0(1/logd),
) 2
(=) 1
- 3
1—wi (@) = 2 [2+/ log |z — ¢| df] +0 (1/10g”b) .
0

Here the eigensolution w{™ > 0 4s normalized so that fol wgf)(a:) dx =1, and the formula holds
uniformly in [0,1].
(=)

(i1) The integral operator K=, acting in the subspace of Ly(0,1) orthogonal to w; ’, tends

strongly to K(OZ) as b — oo, and the latter operator has —m~'log|x — &| as its kernel.

Numerical computations show that the eigenvalues of K (og ) corresponding to the eigenfunctions
orthogonal to constants are equal to the antisymmetric sloshing eigenvalues in a half-plane covered
by a dock with a single gap of unit length (the latter eigenvalues are given in [2]). This means
that if the spacing between gaps is sufficiently large, then fluid oscillations in each gap take place
as if there is no the other gap. Fig. 1 shows that for n = 2,4 the values m(f)(b) obtained from (7)
(they are shown by dashed lines) are sufficiently close to the described limit values even for b = 1.

3 Symmetric modes

A real velocity potential u(+)(x, y) of symmetric sloshing modes satisfies the same conditions (1)
and (3)-(5) as u{7)(z,y), and the spectral parameter v(*) replaces v(7) in (4), but

ul =0, =0, y<0, (8)
must be imposed instead of (2). There is a trivial symmetric sloshing mode u(()+)(a:, y) = 1 corre-
sponding to I/é+) = 0. It follows from Green’s formula that the symmetric eigensolutions satisfy

b+1
/ W) (2,0) dz = 0. ()
b
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The following representation:

1 b+1

u®(ay) =~ W (g~ b) log[(@ + )% + 1% ((w - &) + )| de, (10)

2 J,

which is similar to (6), leads to the spectral problem:
1
w(z) = - Hr! / [log<:v +&+2b) +log |z — 5\] w(€)dg, =€ (0,1).
0

Unfortunately, it has no solution satisfying (9), and so u(*) obtained from (10) violates the condi-
tion of energy finiteness (5). Nevertheless, a spectral problem involving an integral operator with
more complicated kernel can be obtained in the present case. The starting point is the function

. Az-6 1422 1+22
Wiz¢) = W{IOg(l—Qz)(l—Zg) 2 IOg(l—Zz)

142 (143
2 B 1 2

derived in [1], where the kernel Re W (z, £) appeared in the integral equation equivalent to sloshing
problem and providing the non-trivial symmetric modes for the dock with the single gap

{-1/2<x<+1/2, y =0}.

Let

Gz, y;€) =27"Re{W (2 + b+ 1/2;6+b+1/2) + W(z —b—1/2;6 —b—1/2)
+W(z+b+1/2;—E+b+1/2)+W(z—b—1/2;-( —b—1/2)
— 77 [2b7 log(2b) 4 2(1 + b%) log[2(1 + b)] — (1 + 2b)* log(1 + 2b)] }

and considering G as a function of (z,y) one immediately verifies that (1), (3), (5) and (8) hold.
Besides, we have fbb+1 G(z,0;€)dE = 0.

PROPOSITION 5. — By virtue of
b+1
WD) = [ (€ ~) Gl de
b
sloshing problem for non-trivial symmetric modes is equivalent to the following spectral problem:
1
W (g) = o) / Glz +b,0:€ +b) wH(€)de, € (0,1), (11)
0

where the integral operator K& in the right-hand side is a compact, selfadjoint operator in the
subspace of Lo(0,1) consisting of functions which satisfy (9).

As in sect. 2, this proposition yields
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COROLLARY 2. — There exists a sequence of eigenvalues

O<1/£+) <1/2(+) <., gyff) < ... such that u,(l+) — 00 as n — oo;
foreachn =1,2,..., either 1/7(1+) and wSLH(I) are continuous functions of b > 0 and these functions

are analytic for b > 0.
The main result of the present section is as follows.

PROPOSITION 6. — The identity

dV7(L+) 0 2 b+1 2
:/ ‘@/ ug)(o,y)‘ dy / ‘uﬁ')(x,O)‘ dz, b>0, (12)
db —o0 b
holds for eachn =1,2,..., and so V,(LH is a monotonically increasing function of b > 0.
Proof. — Let usf)(m,y;b) be a symmetric eigenmode corresponding to the sloshing eigenvalue

V7(L+)(b). Proposition 5 implies that z/,(f)(b) is a differentiable function of & > 0. Let A be a
sufficiently small number (such that b+ A > 0). After extending ugf)(z,y; b+ A) to the whole

half-plane y < 0 by means of the Schwarz Reflection Principle, we consider ugf) (x+A,y;0+ A)

defined in the closed quadrant {z > 0, y < 0} even when A < 0. The latter function satisfies the

similar boundary conditions as ugf)(x, y;b) on

{0<z<by=0}, {b<ax<b+1l,y=0} and {b+1<z <400, y=0}

respectively. Let us apply the second Green’s formula to uﬁ')(x, y;b) and ugf) (r4+ A,y;b+ A) in

{z > 0, y < 0}. This gives
b+1
/b [ugj)(x, 0;5) 3, ulH) (z + A, 0;0 + A) — ulP (x + A, 056 + A) 3, ulH (, 0; b)] da
0
= / [U%” (0,43 b) 0 ulH (A, y; b+ A) —ulH (A, y; b+ A) 0, ulH (0, y; b)] dy

— 00

because (5) guarantees that the integral over a large quarter-circle tends to zero as its radius goes
to infinity; the homogeneous Neumann condition on the dock is also applied here. Using (8) and
the Lagrange theorem in the second integral, and the free surface conditions in the first one, we
get

b+1
[V,(ﬁ(b +A) - u,(j)(b)] / ulH (2,0:b) ulH (z + A, 0;b+ A) da
b
0
=8 [ D050 Rl O A b+ A)dy,
where 0 < 0(y) < 1 for y € (—o0, 0). Letting A — 0 in this equation divided by A produces

dl/?(er) /b+1 0
db J,

2
uﬁf)(wao;b)‘ dm:/ ulH (0, y3b) 02 ulH (0, y;b) dy.

— 00
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In order to obtain (12), it remains to transform the last integral using the Laplace equation

and then applying integration by parts. The out of integral terms vanish because 9, ug_)(O, y; b)
satisfies the no flow condition on the dock and decays at infinity.

As in the antisymmetric case, numerical computations show that for large b the value of u,(LJr) (b)
obtained from (11) asymptotes the n-th sloshing eigenvalue in a half-plane covered by a dock with
a single gap of unit length. Fig. 1 shows that for n = 1, 3,5 the values P (b) (they are shown by
solid lines) are sufficiently close to the described limit values even for b = 1.

We conclude the note with the following result.

PROPOSITION 7. — All symmetric eigenvalues are simple for any b > 0. For antisymmetric eigen-
values this property holds at least for b =0 and sufficiently small positive b.

To the authors’ knowledge, there are only two papers treating the question of simplicity of the
sloshing eigenvalues. In [5], it is demonstrated that the first eigenvalue is simple, and a condition
guaranteeing that the second eigenvalue is simple is obtained in [6].
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