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Introduction

A forward stationary motion of surface-piercing bodies in an ideal, incompressible, heavy

fluid of infinite depth is considered. In the framework of the linear theory of surface waves

the motion is described by the so-called Neumann-Kelvin problem for a velocity potential.

In [3] and [10] this problem was proved to be well-posed in the case of totally submerged

bodies. At the same time, for surface-piercing bodies the Neumann–Kelvin problem is known

to have a family of solutions depending on 2N parameters, where N is the number of bodies

(see e.g. [9]). Thus, the initial set of equations should to be augmented by supplementary

conditions. Some versions of such conditions were proposed in [9], [6], [4] and [5]. We use

the statement of the paper [9] delivering the so-called “least singular” solution. The velocity

field of such potential is bounded in the corner points, where the contour of body meets the

free surface of fluid.

In [4] the “least singular” statement was proved to be uniquely solvable for all values of

the forward velocity with possible exception for a sequence tending to zero. Our purpose is

to demonstrate that these irregular values do exist. Following [7] where a non-uniqueness

example was obtain for the 2D sea-keeping problem, we use the so-called inverse procedure

for simultaneous construction of surface-piercing bodies and of the potential of mode with

finite energy, trapped by these bodies. Namely, we fix a value of the forward velocity and

construct a potential as a sum of source and sink of the same strength placed in the free

surface and separated by a distance of some wavelengths. The special choice of distance

guarantees absence of waves at infinity for the potential and, hence, the finiteness of energy.

Investigation of potential’s streamlines shows that there is a pair of them with the both ends

in the free surface and enclosing sources inside. These streamlines are interpreted as body

contours. Thus, a geometry is obtained for which the homogeneous problem has a nontrivial

solution. The trapped modes are supposed to be related to resonances in some more general

initial value problem (see [8]).

In [7] example was only constructed with two bodies. Indeed, more that two homotopical

families of contours can be obtained in enlarging the distance between singularities. We prove

that for any fixed value of forward velocity and a caravan, consisting of two and more bodies,

the geometry of these bodies can be fixed so that the homogeneous Neumann–Kelvin problem
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has a non-trivial solution with finite energy. Proof of the assertion is based on description

of the streamlines of level zero, which separate homotopical families of streamlines, and on

a relationship connecting values of the stream function in the fluid and in the free surface

at fixed horizontal coordinate.

1. Statement of the problem

We describe the boundary value problem for one semisubmerged body. The notations are

introduced in fig. 1 where W is the domain occupied by fluid, F = F+∪F− is the free surface

of fluid, D and S are the cross-section and the wetted surface of the cylinder. Also, we

denote by U and by g the constant forward speed of the body and the gravity acceleration

respectively. It is assumed that the contours S are not tangent to the free surface, i.e.

β± 6= 0, π. The unit normal vector n is directed into the domain occupied by fluid. From

now on we use the dimensionless coordinate x = Xg/U2 and y = Y g/U2.
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In a coordinate system attached to the body the Neumann–Kelvin problem for the ve-

locity potential u ∈ H1
loc(W ) is as follows:

∇2u = 0 in W (1.1)

uxx + uy = 0 on F \ {P+, P−} (1.2)

∂u/∂n = f on S \ {P+, P−} (1.3)

lim
x→+∞

|∇u| = 0 (1.4)

sup{|∇u| : (x, y) ∈ W \ E} < ∞ (1.5)

where E is a compact set such that D ⊂ E and E ∩ (F± \ {P±}) 6= ∅.
The problem (1.1)–(1.5) is known to have two-parameter family of solutions and should

be augmented by two supplementary conditions. For this purpose we use the asymptotics

of a solution to the problem near the corner points P±. This asymptotics was established

in [4]. Introduce the polar coordinate (ρ±, θ±) with origin in the point P± and polar axes
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directed along the ray F±. The angle θ+ (θ−) is measured clockwise (counterclockwise) so

that 0 ≤ θ± ≤ β±. Then, when ρ± → 0 we have

u = C± + B±ρ
π/(2β±)
± sin (πθ±/(2β±)) + +A±ρ± cos(θ± − α±) + O

(
ρ

λ±
±

)
, when β± 6= π/2

u = C± + B± [ρ± log ρ± sin θ± + ρ±(θ± − π/2) cos θ±] +

+ A±ρ± cos(θ± − α±) + O
(
ρ

λ±
±

)
, when β± = π/2 (1.6)

Here α± and λ± are constants, 1 < λ± < 2 when β± ≥ π/2 and λ± = 2 when β± < π/2.

In [9] F. Ursell introduced for a semicircle a statement which delivers the so-called “least

singular” solution with bounded in the corner points vector field. This statement was con-

sidered in [4] for arbitrary contours with β± ≥ π/2 when, as it follows from (1.6), the vector

field is allowed to have singularities. Here we generalize the least singular statement so that

it works for the contours with β+ < π/2 or β− < π/2 as well.

Definition 1. We speak that a potential u is “least singular”, if it satisfies (1.1)–(1.5) and

is submitted to the following conditions

B+ = B− = 0, (1.7)

where B± are the coefficients in (1.6).

This statement is naturally defined for any number of semisubmerged bodies. Note that

the results of the paper [4] concerning the “least singular” statement are true for the solution

introduced in the last definition.

In the work we shall construct trapped modes of the problem under consideration. For

this purpose we use the source function of the problem (1.1)–(1.5). The Green function

G(x, y; ξ, η) satisfying conditions (1.2), (1.4) and submitted to the source equation

∇x,yG(x, y; ξ, η) = −δ(x− ξ, y − η) when y < 0, η < 0

and to the condition

lim sup
|x+iy|→∞

|∇x,yG| < ∞

can be written as follows

G(z; ζ) = −(2π)−1 Re
{

log
(
(z − ζ)(z − ζ)

)− 2 e−i(z−ζ)
[
Ei

(
i(z − ζ)

)− iπ
]}

(1.8)

Here z = x + iy, ζ = ξ + iη and Ei(z) is the exponential integral.
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For our purposes it is sufficient to consider the case when the source is situated in the

free surface. Introduce a stream function of the source H(z; ζ) which is complex conjugated

to the Green function with respect to z. By 8.212.5 in [2] we write:

H(x, y; ξ, 0) = −π−1 arg(z − ξ) + π−1 v.p.

∫∞
0

eky sin k(x− ξ)

k − 1
dk − ey cos(x− ξ) (1.9)

where arg(z) ∈ [−π, 0] when y ≤ 0. The relationship

arg(z) = −π

2
+

∫∞
0

eky sin kx

k
dk, y ≤ 0

follows from 3.941.1 in [2]. The latter leads to another representation

H(x, y; ξ, 0) = π−1

(
v.p.

∫∞
0

eky sin k(x− ξ)

k(k − 1)
dk +

π

2

)
− ey cos(x− ξ) (1.10)

In view of the asymptotics Ei(z) as z → 0 (see. 5.1.10 in [1]) it is easy to see that the

function H(x, y; ξ, 0) is continuous in (ξ, 0).

2. Non-uniqueness examples

Consider a family of potentials un which are combinations of source and sink located in the

free surface of fluid at distance of some wavelength. Let the corresponding stream function

be defined as follows

vn(x, y) = πH(x, y; πn, 0)− πH(x, y;−πn, 0) (2.11)

It is to note that the stream functions are even functions of x.

Remark 1. When |z| → ∞ and |ζ| < C < ∞ we have (see e.g. [4])

G(z; ζ) = −π−1 log |z| − ϑ(−x)2 ey+η sin(x− ξ) + O(|z|−1)

where ϑ is the Heaviside function. Thus, the functions un are defined in such a way that they

do not have the logarithmic and the wave components in asymptotics at infinity downstream.

Denote by R0 the set of the function vn(x, y) streamlines whose both endpoints are

located in the free surface. Let the all streamlines be parameterized by t ∈ [0, 1]. Consider

the set R1 =
{(

x(t), y(t)
) ∈ R0 : ∃(xi(t), yi(t)

) ∈ R0,
[
xi(0), xi(1)

] ⊂ (
x(0), x(1)

)
, i =

1, 2,
(
x1(0), x1(1)

) ∩ (
x2(0), x2(1)

)
= ∅}, defined as the set of streamlines enclosing more

than one family of streamlines.
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We introduce R = R0 \R1 and the homotopical equivalence ρ ⊂ R×R. We speak that

γ(t) and γ′(t) are homotopical, i.e. (γ, γ′) ∈ ρ, if there exists a function Φ(t, s) such that:

Φ(t, s) is continuous for t ∈ [0, 1] and s ∈ [0, 1]; Φ(t, s) ∈ R for all s ∈ [0, 1]; Φ(t, 0) = γ(t),

Φ(t, 1) = γ′(t).

In the Section 4 we shall prove the following assertion

Theorem 1. The number of elements of the factor-set R/ρ is equal to 2n + 1.

Let T1 and T2 be the sets of all streamlines enclosing the sources. Below we shall prove

that T1 6= ∅ and T2 6= ∅. Denote by Q1, Q2 and Ti (3 ≤ i ≤ 2n + 1) sets of homotopically

equivalent contours so that Q1 ⊃ T1 and Q2 ⊃ T2. Then, Theorem 1 states that R/ρ =

{Q1, Q2, T3 . . . , T2n+1}. We fix some contours S = γ1∪γ2∪ . . . γN where 2 ≤ N ≤ 2n+1 and

γi ∈ Ti. It is easy to see that if the contours S are fixed as contours of bodies in the problem

(1.1)–(1.5), (1.7), then the corresponding potentials un are solutions for the problem with

homogeneous condition (1.3).

3. Properties of the functions vn

Comparing the presentations (1.9) and (1.10), we get the differential equations ∂vn/∂y =

vn − Vn. Thus, at fixed x we have

vn(x, y) = ey

(
vn(x, 0) +

∫ 0

y

Vn(x, t) e−t dt

)
(3.12)

Here

Vn(x, y) = arg (x + πn + iy)− arg (x− πn + iy)

and, obviously,

0 ≤ Vn(x, y) ≤ π, when y < 0 (3.13)

Hence, the integral in (3.12) is a monotonical function of y.

The formulas (2.11) and (1.9) leads to the representation

vn(x, 0) = π +

∫∞
0

sin k(x− πn)− sin k(x + πn)

k − 1
dk

By 3.722.5 and 3.354.1 from [2], we have

vn(x, 0) = π
(
1− 2 cos(x− πn)

)
+

∫∞
0

e(x−πn)k + e−(x+πn)k

1 + k2
dk (3.14)
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when x ∈ [0, πn] and

vn(x, 0) =

∫∞
0

e−(x+πn)k − e−(x−πn)k

1 + k2
dk. (3.15)

when x > πn.

Using the last representations and taking into account the symmetry of the functions vn

with respect to x, one can easily prove two following assertions.

Lemma 1. The function vn(x, 0) has 2n zeros ξ1 < ξ2 < . . . < ξ2n and ξi ∈ (−πn, πn) for

i = 1, 2, . . . , 2n.

Lemma 2. There are 2n + 1 local extremums of the function vn(x, 0) located in the points

χ1 < χ2 < . . . < χ2n+1 where χ1 ∈ (−πn, ξ1

)
, χ2n+1 ∈ (

ξ2n, πn
)

and χi ∈
(
ξi−1, ξi

)

(i = 2, 3, . . . , 2n).

4. Non-uniqueness examples geometry

First we note that properties of harmonical functions yield that endpoints of streamlines can

not be located inside the fluid, particularly there are no isolated points vn(x, y) = c. A proof

of this fact can be found e.g. in [7].

Consider the lines of level zero. In view of (3.12) a solution of the equation vn(x∗, y) = 0

at fixed x∗ satisfies the relationship

vn(x∗, 0) = −
∫ 0

y

Vn(x∗, t) e−t dt (4.16)

From the definition of Vn and the inequalities (3.13) it follows that the right-hand side

of the last equation is a negative, unbounded and monotonically decreasing function of the

depth |y|. Thus, the unique solution of (4.16) only exists when vn(x∗, 0) ≤ 0.

From (3.15) and Lemma 1 we see that vn(x, 0) ≤ 0 only for x ∈ Fi (i = 1, 2, . . . , n + 1),

where F1 = (−∞, ξ1], Fn+1 = [ξ2n, +∞), Fj = [ξ2j, ξ2j+1] (j = 1, 2, . . . , n − 1). Denote by

γ
(i)
0 the lines of level zero so that Fi = prx

(
γ

(i)
0

)
(i = 1, 2, . . . , n + 1). Then, the lines γ

(1)
0

and γ
(n+1)
0 do to infinity and the contours γ

(j)
0 (j = 2, 3, . . . , n− 1) are bounded.

Obviously, any line of negative level with endpoint in Fi is confined in the contour γ
(i)
0

(1 ≤ i ≤ n + 1) and is homotopically equivalent to the latter. This fact is true in view of

Lemma 2 which forbids existence of two lines of the same level with endpoints in Fi. Lines

of non-zero level emanating from F1, Fn+1 can not go to infinity (see Remark 1) and, thus,

their second endpoints are also situated in the free surface. Since ξ1 > −πn and ξ2n < πn

then there exist contours enclosing the sources.
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Consider the contour R eiθ, −π ≤ θ ≤ 0 as R → ∞ and make of use (1.8) and the

following asymptotic representation of Ei(z) as Re(z) > 0 and |z| → ∞:

Ei(z) = iπ sign (Im(z)) + ez

{ N∑

k=1

(k − 1)!z−k + O
(|z|−N−1

)}

(see 5.1.7 and 5.1.51 in [1]). It is easy to compute that vn(x, y) = −2πn sin(θ)/R + O(R−2)

and, thus, the line γ
(1)
0 (γ

(n+1)
0 ) as x → −∞ (x → +∞) coinsides with the line y = −1.

By (3.12) and (3.13) we establish

vn(ξi, y) = ey

∫ 0

y

Vn(ξi, t) e−t dt ≤ π ey
(
e−y − 1

)
< π, i = 1, 2, . . . , 2n

At the same time, (3.14) yields that vn(χ2j, 0) > 3π (j = 1, 2, . . . , n). Consider a line

emanating from the free surface in one of the intervals which form the set {x : vn(x, 0) > π}.
The line has to end in the same interval of the free surface, because it can not intersect the

rays x = ξi (i = 1, 2, . . . , 2n) and can not go to infinity. In view of Lemma 2 two lines of the

same level can not co-exist in one of the intervals in question.
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Fig. 2
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Thus, we prove the assertion fo Theorem 1. Namely, the maximal number of semisub-

merged bodies for which the function vn delivers non-uniqueness example to the problem

(1.1)–(1.5), (1.7) is equal to 2n + 1 and corresponds to the number of local extremums of

the function vn(x, 0).

Shown in fig. 2 are results of computation for n = 3. Fig. 2(a) shows the function v3(x, 0).

Fig. 2(b) demonstrates streamlines v3(x, y) = c, where the solid, dashed and dashed with

points lines correspond to c = 3.5;−1/3 and 2.2 respectively. The set v3(x, 0) = 0 is plotted

with bold lines. The graphs are symmetric with respect to y-axis.
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