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The two-dimensional Neumann–Kelvin problem describing the steady-state for-
ward motion of a totally submerged tandem is considered in the case when fluid
consists of two superposed layers of different densities and bodies intersect the
interface between them. For the so-called least singular solution examples of non-
uniqueness (trapped modes) are constructed using the inverse procedure. This
procedure was previously applied by McIver [7] to the problem of time-harmonic
water waves and by Motygin [8] and Kuznetsov & Motygin [6] to the least singular
and resistanceless statements of the Neumann–Kelvin problem involving a surface-
piercing tandem in a homogenious fluid. In the situation under consideration the
inverse method involves investigation of stream lines generated by two vortices
placed in the interface. The spacing of vortices delivering trapped modes depends
on the forward velocity.

Introduction

In the present note we consider the Neumann–Kelvin problem describing in the frame-
work of the linearized water wave theory the steady-state two-dimensional motion of
cylindrical bodies in an inviscid, incompressible fluid under gravity. The fluid consists
of two superposed layers having different densities and the bodies intersect the interface
between the layers. This case reveals new features in comparison with that of a body
totally immersed in one of the layers considered by Motygin & Kuznetsov [9]. As for
a body piercing the free surface of a homogeneous fluid (see Ursell [11] and Kuznetsov
& Maz’ya [5]) the Neumann–Kelvin problem for interface-piercing bodies turns out to
be under-defined and should be augmented by some supplementary conditions. Here
we apply a statement leading to the “least singular” solution proposed by Ursell [11]
for a circular cylinder semi-immersed in water. This statement requires the velocity
field to be bounded throughout fluid. For an arbitrary body in a homogenious fluid
the solvability theorem was proven for this statement by Kuznetsov & Maz’ya [5], but
it holds not for all values of the forward velocity. A certain sequence of values could
be excluded, and the existence of the exceptional values was demonstrated for special
surface-piercing bodies by Kuznetsov & Motygin [6].
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The main purpose of the note is to show that similar examples of totally submerged
interface-piercing bodies do exist delivering non-uniqueness under the least singular
supplementary conditions for isolated values of the forward velocity. The corresponding
velocity potentials having finite energy (“trapped modes”) are constructed by means
of the so-called inverse procedure previously applied to the problem of time-harmonic
water waves by McIver [7], and to the Neumann–Kelvin problem by Motygin [8] and
Kuznetsov & Motygin [6]. This method uses the stream line pattern of a system of
singularities placed on the boundary (the interface between the layers in this work)
so that waves cancel at infinity pairwise. If stream lines enclosing the singularities
are found, they can be interpreted as contours of bodies, and the potential represents
a mode trapped by them. Since the potentials constructed here are waveless, the
non-uniqueness examples work also for a statement of the Neumann–Kelvin problem
prescribing amplitude and phase of waves at infinity (see Kuznetsov & Motygin [6]). A
statement having no trapped modes does exist (see Klimenko [3] in this volume).

Statement of the problem

The geometric notation is given in fig. 1. The upper (lower) fluid of the density ρ(+)

(ρ(−) > ρ(+)) occupies domain W (+) (W (−)) which is bounded from above by the free
surface {y = h} (by the interface between the layers {y = 0} from which two segments
are removed). It is assumed that there are two immersed cylinders and the contour

Si = S
(+)
i ∪ S

(−)
i of each cylinder intersects the interface only at two points P2i−1, P2i,

i = 1, 2 (the ends of segments removed from the interface). Here S
(+)
i (S(−)

i ) is the
smooth part of contour wetted by the upper (lower) fluid. The contours are allowed to
have corners at Pi so that the angles β

(±)
i are not equal to 0 or π.

The fluid motion in the upper (lower) layer is described by a velocity potential u(+)

(u(−)), which must satisfy the boundary value problem:

∇2u(±) = 0 in W (±), (1)
u(+)

xx + νu(+)
y = 0 when y = h, (2)

u(+)
y = u(−)

y when y = 0 outside the bodies, (3)

ρ(+)
[
u(+)

xx + νu(+)
y

]
= ρ(−)

[
u(−)

xx + νu(−)
y

]
when y = 0 outside the bodies, (4)

∂u(±)/∂n = f (±) on S
(±)
i , bounding W (±) internally, (5)

sup
W (±)\E

|∇u(±)| < ∞, lim
x→+∞ |∇u(±)| = 0,

∫

W∩E
|∇u(±)|2 dxdy < ∞. (6)

Here E is a compact set including an open vicinity of {P1, P2, P3, P4}, ν = g U−2, U is
the constant speed of bodies, and g is the acceleration due to gravity. The functions
u(±) are defined up to constant terms.

There exist two regimes of flow about the bodies (see Motygin & Kuznetsov [9]). If
ν > ν∗, where

ν∗ = (1 + ε)/εh, ε = ρ(−)/ρ(+) − 1,
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Figure 1: A sketch of geometrical notations

then there exist a superposition of waves with wavenumbers ν and ν0 behind the body.
The former (latter) are “surface” (“internal”) waves manifesting themselves mainly on
the free surface (interface). Here ν0 is the only positive zero of

Q(k) = (1 + ε)k + (k − εν) tanh kh. (7)

existing for ν > ν∗. If ν < ν∗, then there are only surface waves at infinity downstream.
The third condition in (6) allows to avoid strong singularities at the corner points

Pi. The local asymptotics near the corner point Pi (similar to that given by Kuznetsov
& Maz’ya [5]) can be derived. Let (r, θ) be the polar coordinate system with origin at
Pi, and θ ∈ (−β

(+)
i , β

(−)
i ) measured from {y = 0} clockwise (anticlockwise) at P2, P4

(P1, P3). Then, by separation of variables one finds that

u(±)(r, θ) = u(±)(Pi) +
f (±)(Pi)

cosβ
(±)
i sinλiβ

(±)
i

r sin θ +
Ai

sinλiβ
(±)
i

rλi cosλi(β
(±)
i ± θ)

+ Φ(±)(r, θ) + O(r1+δ), δ > 0 (8)

as r → 0. Here λi ∈ (0, 2) is the smallest positive root of

ρ(−) cotλiβ
(−)
i = −ρ(+) cotλiβ

(+)
i , (9)

and if ρ(−) cotβ
(−)
i = −ρ(+) cotβ

(+)
i , then

Φ(±)(r, θ) =
Air

sinλiβ
(±)
i

[
− log r cos

(
β

(±)
i ± θ

)
+

β
(±)
i cos θ

sinβ
(±)
i

+ θ sin
(
θ ± β

(±)
i

)]
,

(hence, λi = 1), and Φ(±)(r, θ) = 0 otherwise. The asymptotics (8) can be justified
using results of Kondratyev [4] (see also the book [10] by Nazarov & Plamenevsky).

By (8) the velocity field can be singular at a point Pi when β
(+)
i and β

(−)
i satisfy

ρ(−) cotβ
(−)
i ≤ −ρ(+) cotβ

(+)
i . (10)
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If (10) holds at Pi, i = 1, 2, 3, 4, then we introduce (following Ursell [11]) the least singu-
lar solution u(+) and u(−) satisfying (1)–(6) and having bounded derivatives throughout
the fluid, that is, Ai = 0 in (8) (i = 1, 2, 3, 4). The solvability theorem for this state-
ment can be obtained following the scheme developed by Kuznetsov & Maz’ya [5] for a
surface-piercing body in a homogeneous fluid. In that paper the existence of the least
singular solution was proven for all values of ν with possible exception for a sequence
tending to infinity.

Non-uniqueness examples

First we consider the supercritical regime (ν < ν∗) when there are only surface waves
at infinity downstream. We define potentials u(+) and u(−) in terms of Green’s function
G (given by Motygin & Kuznetsov [9]) as follows:

u(±) = u
(±)
0 (x− π/ν, y)− u

(±)
0 (x + π/ν, y), ±y > 0 (11)

u
(±)
0 = πν−1

[
G(±)

x (z, +i0)−G(±)
x (z,−i0)

]
, z = x + iy

where G(±)(z, ζ) is a potential of the source located at ζ ∈ W (±) and the last combi-
nation of G

(±)
x corresponds to a horizontal vortex. Using the asymptotics of Green’s

function derived by Motygin & Kuznetsov [9] and presented in the paper by Klimenko
[3], it is easy to see that the potentials u(+) and u(−) are waveless at infinity. Further,
denote by v(±) and v

(±)
0 stream functions corresponding to u(±) and u

(±)
0 respectively.

From the Cauchy-Riemann equations we find that

v
(±)
0 = πν−1

[
G(±)

y (z,−i0)−G(±)
y (z, +i0)

]
. (12)

Then (12) and (3), which holds for G(±)(z, ζ) as a function of z, imply

v(+) = v(−), when y = 0, x 6= ±π/ν. (13)

By (13) a stream line v(+) = c is extended below the interface as a stream line v(−) = c.
Further, the representation of Green’s function given by Motygin & Kuznetsov [9] yields

v
(±)
0 (x, y) = −γ log |z|+ I(±)(x, y). (14)

Here
γ =

ε

2 + ε
, I(±)(x, y) =

∫ ∞

0

{
D(±)(k, y) cos kx +

γe−k

k

}
dk, (15)

where D(+) = D1ek(y−h) + D2e−ky, D(−) = D3eky and

D1 =
ε(k + ν)

2(k − ν)Q(k) cosh kh
, D2 =

εekh

2Q(k) cosh kh
− γ

k
, D3 =

ε(k − ν tanh kh)
(k − ν)Q(k)

− γ

k
.

The functions D(±)(k, y) have simple poles at k = ν, and the integrals in (15) are
understood as the Cauchy principal value.
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Figure 2: Stream lines v(±)(x, y) = 0.05, 0.1, 0.2 for νh = 1, ε = 0.5, delivering
examples of a forebody for a wave-trapping tandem in the supercritical regime (ν < ν∗).

c β
(+)
3 β

(−)
3 β

(+)
4 β

(−)
4 λ3 λ4

0.2 108.81o 79.04o 125.60o 71.83o 0.9881 0.9572
0.1 111.69o 76.18o 137.34o 61.19o 0.9933 0.9622

0.05 113.25o 74.56o 146.38o 51.04o 0.9964 0.9701

Table 1: Values of β
(±)
i and λi obtained numerically for the contours shown in fig. 2.

Since Di(k) = O(k−2) as k → +∞, I(+) (I(−)) converge uniformly in (x, y) belong-
ing to the closed upper (lower) layer. Thus we see that

I(±)(x, y) = O(1) as z → 0. (16)

This and the equalities (13) and (14) guarantee that stream lines v(±) = c are close to
circles for sufficiently large c, and enclose the singularities placed at (±π/ν, 0). Some of
stream lines enclosing the right singularity are shown in fig. 2. The pattern of stream
lines is symmetric about the y-axis. Numerical scheme used for computation of v

(±)
0 is

described in the next section.
Interpreting two stream lines surrounding (±π/ν, 0) as contours of bodies S1 and

S2 respectively (see fig. 1), we obtain a geometry for which the potentials (11) deliver a
non-trivial solution to the homogeneous problem (1)–(6). Since the derivatives of (11)
have no singularities at Pi, these potentials provide a non-uniqueness example for the
least singular statement if (10) holds for pairs of angles β

(+)
i , β

(−)
i (i = 1, 2, 3, 4). This

means that λi obtained from (9) is less than one, and hence, in general, solutions to
(1)–(6) admit singularities of the velocity field for contours satisfying (10).

Since (3), (4) hold for G(±)(z, ζ) as a function of z, we get from (12)

ρ(+)
[
v(+)
y − νv(+)

]
= ρ(−)

[
v(−)
y − νv(−)

]
for y = 0, x 6= ±π/ν.
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Figure 3: Stream lines v(±)(x, y) = 1.5, 2.0, 2.5 for ν0/ν = 2, νh = 15, ε = 2, delivering
examples of a forebody for a wave-trapping tandem in the subcritical regime (ν > ν∗).

c β
(+)
3 β

(−)
3 β

(+)
4 β

(−)
4 λ3 λ4

2.5 94.12o 94.12o 97.12o 97.10o 0.9562 0.9267
2.0 95.00o 94.98o 100.35o 100.65o 0.9473 0.8948
1.5 95.05o 95.04o 105.30o 105.36o 0.9468 0.8542

Table 2: Values of β
(±)
i and λi obtained numerically for the contours shown in fig. 3.

Using (3) and
cotβ

(±)
i = ±(−1)iv(±)

y /v(±)
x , i = 1, 2, 3, 4, (17)

in (4) one obtains

ρ(+) cotβ
(+)
i + ρ(−) cotβ

(−)
i = (−1)i

(
ρ(−) − ρ(+)

)
v(+)(Pi)/v(+)

x (Pi).

Thus (10) holds when
(−1)iv(+)(Pi)/v(+)

x (Pi) ≤ 0.

From (14) and (16) we obtain that ∂v
(±)
0 (x, 0)/∂x ∼ −γx−1 as x → 0. So we see that

the last inequality takes place for the stream lines v(±) = c when c is large enough.
Numerical results for β

(±)
i and the exponent λi in (8) are presented in table 1 for

contours shown in fig. 2. The angles β
(±)
i are calculated using (17) where v

(±)
x and v

(±)
y

are evaluated in the same way as v(±) (see the next section); λi are obtained by solving
(9) numerically.

A similar method allows to construct examples of non-uniqueness for the subcritical
case when internal waves exist at infinity downstream. Using (11) we define waveless
potentials as follows

u
(±)
∗ (x, y) = u(±)(x− π/ν0, y)− u(±)(x + π/ν0, y).
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Level lines of the stream function v
(±)
∗ (x, y) corresponding to u

(±)
∗ enclose four points(

(−1)iπ/ν + (−1)jπ/ν0, 0
)
, i, j = 1, 2. Thus, the potentials u

(±)
∗ provide non-unique-

ness examples with four interface-piercing bodies. The existence of contours enclosing
singularities is again a consequence of (14) and (16).

It is worth noting that if ν > ν∗ and ν/ν0 is rational, then non-uniqueness examples
can be constructed using two singularities similarly to the supercritical case. If the
equality

ν0

ν
=

m

n
, where m,n ∈ {1, 2, 3, . . .},

holds, waveless potentials can be defined as follows

u(±)(x, y) = u
(±)
0 (x− nπ/mν, y)− u

(±)
0 (x + nπ/mν, y)

A pattern of stream lines for this case of the subcritical regime is shown in fig. 3 and
the corresponding values of β

(±)
i and λi are given in table 2.

Computational procedure

In this section we describe a scheme for calculation v
(−)
0 when the difficulty arises

because of infinite upper limit of I(−) (see (15)). Moreover, its integrand is an oscillating
function having a simple pole at k = ν.

First we regularize the integral. The function

D3(k) = D3(k)− γ

k
− 2εν

(ε + e2νh)(k − ν)
,

is analytic on (−σ,+∞), σ > 0. Then I(−) can be rewritten as follows:

I(−)(x, y) =
∫ +∞

0
D3(k)eky cos kx dk − γ log |x + iy|+ 2εν

ε + e2kh
F0(x, y, ν), (18)

where the well-known formula

log |x + iy| = −
∫ +∞

0

eky cos kx− e−k

k
dk.

is used together with

F0(x, y, a) =
∫ +∞

0

eky cos kx

k − a
dk = Re

{
ea(y−ix) Ei(−a(y − ix))

}

(see 8.212.5 in Gradshteyn & Ryzhik [2]). Futhermore, we split the integral in (18) into
a sum

∫ +∞

0
D3(k)eky cos kx dk =

(∫ b

0
+

∫ +∞

b

)
= J1(x, y, b) + J2(x, y, b). (19)

Author’s typeset of the note in Proc. of Int. Conf. “Day on Diffraction’99”, St.Petersburg, 1999, p.137–145.



8 non-uniqueness in the 2d problem of a two-layer flow about interface-piercing bodies

Since

D3(k) = −4γ

k
−

(
1− (2 + 4ε + ε2)e−2kh

2 + ε

)
2γ

k − γ
+

4γ2(1 + ε)e−2kh

(2 + ε)(k − γ)2

− 2εν

(ε + e2νh)(k − ν)
+

2ενe−2kh

(k − ν)
+ O(e−3kh) as k →∞,

we have for sufficiently large b:

J2(x, y, b) ≈ −4γ F1(x, y, 0, b) + 2γ F1(x, y, γ, b)− 2εν

(ε + e2νh)
F1(x, y, ν, b)

+ 2εν F1(x, y − 2h, ν, b)− 2γ(2 + 4ε + ε2)
2 + ε

F1(x, y − 2h, γ, b)

+
4γ2(1 + ε)

(2 + ε)
F2(x, y − 2h, γ, b), (20)

where

F`(x, y, a, b) =
∫ +∞

b

eky cos kx

(k − a)`
dk = (b− a)1−` Re

{
ea(y−ix) E`((a− b)(y − ix))

}
.

The last equality follows from 5.1.4 in Abramowitz & Stegun [1]. In order to compute
J1 in (19) a weighted integration scheme of middle rectangles is applied with the weight
ρ(x, y, k) = exp{ky} cos kx. Then, J1(x, y, b) ≈ LN (x, y, b), where

LN =
N∑

j=1

D3(ξj)
∫ kj

kj−1

ρ(x, y, k) dk. (21)

Here kj = j∆, ξj = (kj + kj−1)/2 and ∆ = b/N . Substituting the integrals in (21) we
obtain

J1 ≈ LN = Re
{

1− e−izδ

iz

N∑

j=1

D3(ξj)e−izkj−1

}
, z = x + iy. (22)

Let us estimate the difference J1 − LN . Using the Lagrange formula

D3(k) = D3(ξj) +D′3(θ(k))(k − ξj),

where θ(k) ∈ (ξj , k), in

Rj =
∫ kj

ξj

ρ(x, y, k) {D3(k)−D3(ξj)} dk,

and taking into account that |ρ(k, x, y)| ≤ 1 when y < 0, we find

|Rj | =
∣∣∣∣
∫ kj

ξj

ρ(k, x, y)D′3(θ(k))(k − ξj) dk

∣∣∣∣ ≤ Mj
(k − ξj)2

2

∣∣∣∣
kj

ξj

=
Mj∆2

8
,
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where Mj = max {|D′3(k)|} for k ∈ [ξj , kj ]. Hence,

|J1(x, y, b)− LN (x, y, b)| ≤ max
k∈[0,b]

{|D′3(k)|} N∆2

4
.

It is worth mentioning that the estimate is uniform with respect to x and y. Finally, we
compute v

(−)
0 combining (18)–(20) and (22). A similar scheme is used for calculation

of v
(+)
0 .
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