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Justification of the Kirchhoff hypotheses and error
estimation for two-dimensional models of anisotropic
and inhomogeneous plates, including laminated plates

By O. V. Motygin, S. A. Nazarov

Laboratory for Mathematical Modelling of Wave Phenomena,
Institute of Mechanical Engineering Problems, Russian Academy of Sciences,

V.O., Bol’shoy pr.,61, St.Petersburg 199178, Russia

Asymptotic analysis of the problem describing deformation of a thin cylindric plate with
clamped lateral side is performed. The problem is considered in the most general statement
with the plate being laminated and consisting of arbitrary number of nonhomogeneous and
anisotrotic (21 elastic moduli) layers. Explicit integral representations of the differential
operators which form the two-dimensional model of the plate are derived. In the case
when the elastic moduli of each of the layers are constant, these integral representations
turn into algebraic ones. The asymptotic procedure is justified with the help of a weighted
inequality of Korn’s type. The error estimates obtained give a rigorous mathematical proof
of both Kirchhoff’s hypotheses (kinematic and static) and shed a light to the well-known
intrinsic inconsistency of the couple of the hypotheses.

Introduction

Numerous investigations related to the theory of thin plates are conventionally divided into

two groups. As of the first group we classify the papers oriented to development of concrete

mechanical applications of the theory. Within this group, based on the classical Kirchhoff

hypotheses, the theory itself becomes heuristically evident and, therefore, does not need

any justification at all. Being, for a long time, the only computational tool in engineering,

such mechanical approaches have resulted in a plethora of practical formulae and numerical

results. At the same time, there has been appearing a series of paradoces originating from

the well-known intrinsic inconsistency of Kirchhoff’s couple of the kinematic and static

hypotheses.

In contrast to the first group presented by papers whose number increases by hun-

dreds annually, the second group still consists of a few publications devoted to estimation

of the approximation accuracy of two-dimensional models of plates (see Morgenstern 1959,

Shoikhet 1973, 1976, Ciarlet & Kesavan 1981, Destuynder 1981, Leora et al. 1986, Destuyn-

der & Gruias 1995) and asymptotic analysis of elasticity problems in thin domains (see

Gol’denveizer 1962, Gol’denveizer & Kolos 1965, Ciarlet & Destuynder 1979, Nazarov 1982,

Caillerie 1984, Sánchez-Palencia 1990, Zorin 1987, Nazarov 1995).
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Besides, we mention here the boundary layer phenomenon which, in mechanics, is known

as “abnormal behaviour of stress-strain state near plate edges” since it cannot be described

by the Kirchhoff hypotheses (see Friedrichs & Dressler 1961, Gol’denveizer & Kolos 1965,

Nazarov 1982, Iosif’jan et al. 1982, Gregory & Wan 1984, Zorin & Nazarov 1989, Nazarov

1996, Dauge & Gruais 1995, Dauge et al. 1998, Mazja et al. 1991, Ch. 15,16 for the case of

smooth boundary and Nazarov 1991a, 1991b, 1992a, 1993 for plates with corners).

By virtue of estimation of the asymptotic accuracy the cited above papers confirm the

Kirchhoff hypotheses and the classical two-dimensional model of homogeneous isotropic

plates. Nevertheless, a rigorous justification of numerous engineering solutions for aniso-

tropic and laminated plates is still an open question. In this respect there are the papers

(Caillerie 1984, Panasenko & Reztsov 1987, Nazarov 1995) where homogenization of plates

with periodic elastic properties was performed. Since those results were not presented by

explicit formulae, it is difficult to find correct mechanical analogies for them.

In the present work we undertake the asymptotic analysis of the elasticity problem in

arbitrary anisotropic and inhomogeneous plates under the only condition that the elastic

properties vary smoothly in longitudinal directions. We derive and justify two-dimensional

models for such plates including laminated ones. By appealing to the obtained error es-

timates, we prove the Kirchhoff hypotheses and, hence, establish mathematical basis for

the applied investigations mentioned above. We also use the asymptotic analysis to reveal

origins of the Kirchhoff hypotheses inconsistency and formulate a rule which can help to

avoid typical mistakes in employments of the hypotheses.

The paper is organized as follows. In Sect. 2 we describe a general procedure intended

to construct asymptotics of solutions to the elasticity problem and based on polynomial

property (Nazarov 1995) of the elasticity system (see also Nazarov & Plamenevsky 1994,

Ch. 5 and Nazarov 1997a, which make use of this property to implement the theory of

boundary layer for thin plates and rods). The procedure results in a system of three partial

differential equations, the Dirichlet problem for which forms a two-dimensional model of

plates. In Sect. 3 we check up the asymptotic accuracy of the introduced models and

obtain estimates for remainders in asymptotic formulae for three-dimensional stress and

displacement fields in the plate. Based on the weighted Korn’s inequality (see Shoikhet

1973, Kondrat’ev & Oleinik 1988, Nazarov 1992b, Cioranesku et al. 1989, Nazarov 1997c

and others) these estimates turn out to be asymptotically sharp. Finally, in Sect. 4 we prove

the Kirchhoff hypotheses for arbitrary anisotropic and inhomogeneous plate and derive an

integral representation for matrix coefficients of the differential operator in the resultant

system defining the two-dimensional model. For a laminated plate this representation

becomes explicit. The proof due to its generality mathematically substantiates many results

of the mechanical approach (see, e.g. Zorin 1987, where formulae equivalent to those in

Sect. 4 were obtained).

We also mention the papers (Reissner 1986, Arnold & Falk 1996) devoted to corrected

classical models of plates and the papers (Babuška 1992, Babuška & Li 1991, Schwab
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1996) dealing with hierarchic modeling of plates. Those approaches are mostly related to

numerical methods for the elasticity problem on thin plates and lie far enough from the

asymptotic analysis applied in the present paper. We note that the asymptotic precision

of the models mentioned above coincides with the precision of the Kirchhoff model (see

Theorem 3.3 and Corollary 3.4). The fact that it is impossible to find a correction which

improves the usual accuracy in the framework of the two-dimensional models, has natural

origin in the boundary layer phenomenon or the edge effects, implying change of type of the

stress-strain state near the lateral side of a plate. Namely, the plane strain state replaces the

plane stress state with simultaneous change of orientation. We emphasize that construction

of the boundary layer may allow to obtain pointwise estimates of errors in calculation of

stresses and displacements as was shown in (Nazarov 1997b) for thin rods.

1. Formulation of the problem

1. Domains and equations. Let Ωh be the cylinder ω × (−hH−, hH+), where ω is a

domain in IR2 and ∂ω is a simple, smooth, and closed contour. The cylinder Ωh consists of

N superposed layers

Ωn
h = {x ∈ Ωh : hHn−1 < z < hHn},

where x = (y, z), y = (y1, y2), and

−H− = H0 < H1 < . . . < HN−1 < HN = H+.

We assume that the elastic material of Ωh has different properties in the layers Ωn
h and

we denote by an corresponding Hooke’s tensors of rank 4. Let an depend on the “slow”

variables y ∈ ω and the “rapid” variable ζ ∈ Υ = (−H−, H+). The Hooke’s tensor a of the

whole plate, where a(x) = an(x) when x ∈ Ωn
h, is a piecewise smooth tensor having jumps

on the interfaces Γn
h = ω × {hHn}.

Let σ = (σij) and ε = (εij), resp., be the stress and strain tensors related by the

Hooke’s law:

σij =
3∑

k,`=1

aijk`εk`.

It is convenient here to use matrix/column notation. We introduce the strain and stress

columns of height 6,

ε = (ε11, ε22, α
−1ε12, α

−1ε13, α
−1ε23, ε33)

t, (1.1)

σ = (σ11, σ22, α
−1σ12, α

−1σ13, α
−1σ23,σ33)

t,

where t means tranposition and the factors α = 2−
1
2 are introduced to equalize the natural

norms of stress/strain columns and tensors. Then, the Hooke’s law takes the form

σ = Aε.
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Here A is a symmetric and positive definite matrix of size 6×6. To connect A and a we

introduce two sets of indices such that p̄ = 1,1 ; 2,2 ; 3,3 corresponds to p = 1; 2; 6 and

q̄ = 1,2 ; 1,3 ; 2,3 corresponds to q = 3; 4; 5. Then one can directly check the following

presentations for components of the matrix A:

App = ap̄p̄, Aqp = α−1aq̄p̄, Aqq = α−2aq̄q̄ (p, q = 1, . . . , 6).

We introduce a 3×6-matrix of differential operators,

D(∇x) =




∂1 0 α∂2 α∂3 0 0

0 ∂2 α∂1 0 α∂3 0

0 0 0 α∂1 α∂2 ∂3




, ∇x = (∂1, ∂2, ∂3)
t, ∂j =

∂

∂xj

.

Let us interprete a displacement vector u as the column (u1, u2, u3)
t in IR3. Taking into

account the definition εjk(u) = 2−1(∂juk + ∂kuj) of cartesian components of the strain

tensor ε, we get the formula for the strain column

ε(u) = D(∇x)
tu. (1.2)

Using the above notation, the elasticity problem in the plate Ωh can be written as

follows:

D(−∇x)A(y, h−1z)D(∇x)
tu(x) = f(x), x ∈ Ω1

h ∪ . . . ∪ ΩN
h , (1.3)

D(−e3)A1(y,−H−)D(∇x)
tu(x) = g−(y), x ∈ Γ0

h, (1.4)

D(e3)AN(y,H+)D(∇x)
tu(x) = g+(y), x ∈ ΓN

h , (1.5)

u(x) = 0, x ∈ Υh. (1.6)

Here f stands for volume forces, g± for tractions on the faces, whilst the condition (1.6)

corresponds to the clamped lateral side Υh = ∂ω×(−hH−, hH+) of the plate. Furthermore,

we complete the problem (1.3)–(1.6) with the intrinsic transmission conditions implying the

displacement and normal stress vectors to be continuous on Γn
h,

un(y, hHn − 0) = un+1(y, hHn + 0), (1.7)

D(e3)An(y, Hn − 0)D(∇x)
tun(y, hHn − 0)

= D(e3)An+1(y,Hn + 0)D(∇x)
tun+1(y, hHn + 0), y ∈ ω. (1.8)

Here n = 1, . . . , N −1; un is the restriction of u on Ωn
h and v(H±0) denotes one-sided limit

of the function z 7→ v(z) as z → H ± 0.

Let us introduce a small parameter δ > 0 and smooth the function z 7→ A(y, h−1z) in the

δ-neighbourhood of z = hHn. From now on we consider the smoothed Hooke’s matrix Aδ
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which allows us to omit the conditions (1.7), (1.8) during intermediate calculations while

in final formulae we perform the limit passage δ → +0. As verified, this yields correct

formulae for a laminated plate. Nevertheless, we shall be forced to return back to piecewise

smooth matrix A for a justification of asymptotic analysis performed in the formal way.

2. Formal asymptotics

1. The limit problem. Let introduce the rapid variable ζ = h−1z. Obviously, for a

differentiable function x 7→ U(y, h−1z), we have

D(∇x)
tU(y, h−1z) =

(
IDt

yU(y, h−1z) + h−1IDt
ζU(y, ζ)

) ∣∣∣
ζ=h−1z

, (2.1)

where

IDζ = D(0, 0, ∂ζ) =




0 0 0 α∂ζ 0 0

0 0 0 0 α∂ζ 0

0 0 0 0 0 ∂ζ




, (2.2)

IDy = D(∂1, ∂2, 0) =




∂1 0 α∂2 0 0 0

0 ∂2 α∂1 0 0 0

0 0 0 α∂1 α∂2 0




. (2.3)

We denote by L(h, x, ∂x), B−(h, x, ∂x) and B+(h, x, ∂x) the differential operators in the

left-hand side of (1.3), (1.4) and (1.5), resp. Then, in view of (2.1) the operators can be

represented as follows:

L(h, x,∇x) = h−2L0(y, ζ, ∂ζ) + h−1L1(y, ζ,∇y, ∂ζ) + h0L2(y, ζ,∇y),

B±(h, x,∇x) = h−1B0±(y, ζ, ∂ζ) + h0B1±(y, ζ,∇y). (2.4)

Here

L0 = −IDζAIDt
ζ , L1 = −IDζAIDt

y − IDyAIDt
ζ , L2 = −IDyAIDt

y ,

B0± = ±ID1A
±IDt

ζ , B1± = ±ID1A
±IDt

y , (2.5)

and

ID1 = D(0, 0, 1), A± = A(y,±H±).
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6 Kirchhoff’s hypotheses and error estimation for 2d models of anisotropic inhomogeneous plates

The principal (with respect to h) parts of the differential operators (2.4) form the limit

problem

L0(y, ζ, ∂ζ)U(ζ) = F(ζ), ζ ∈ (−H−, H+), (2.6)

B0
±(y, ζ, ∂ζ)U(ζ) = G±, ζ = ±H±. (2.7)

This problem is but the Neumann problem for a system of ordinary differential equations

in ζ with the parameter y ∈ ω. The matrix IDζ is algebraic complete (see Nečas 1967)

and, therefore, L0 is a formal positive operator which possesses the polynomial property

(see Nazarov & Plamenevsky 1994, Nazarov 1995). This leads to the following conclusions.

First, the problem (2.6), (2.7) has a solution if and only if there holds the compatibility

condition ∫ H+

−H−
F(ζ) dζ + G+ + G− = 0. (2.8)

Moreover, its solution is defined up to an additive constant vector and, under the normal-

ization condition ∫ H+

−H−
U dζ = 0, (2.9)

the solution U becomes unique and inherits the smoothness properties in y from the right-

hand sides F and G±.

2. Asymptotic ansatz. We assume that the functions in the right-hand side of (1.3)–

(1.5) take the form

f(y, ζ) = h−1f 0(y, ζ) + h0f 0(y) + f̃(y, z),

g±(y) = h0g0±(y) + g̃±(y), (2.10)

where the detached terms f 0, g0± and f 0 satisfy the conditions

∫ H+

−H−
f 0

3 (y, ζ) dζ + g0+
3 (y) + g0−

3 (y) = 0, y ∈ ω,

f 0
1(y) = f 0

2(y) = 0, y ∈ ω. (2.11)

As we prove by further considerations, the following asymptotic anzatz for a solution to

the problem (1.3)–(1.5) is consistent with the decomposition (2.10) provided the conditions

(2.11) and certain estimates for the remainders f̃ and g̃± hold true:

u(h, x) ∼ U(h, y, ζ) = h−2U−2(y) + h−1U−1(y, ζ) + h0U0(y, ζ) + h1U1(y, ζ). (2.12)

Moreover, appealing to various arguments presented either in (Shoikhet 1973, Ciarlet &

Destuynder 1979, Destuynder 1981, Leora et al. 1986, Sánchez-Palencia 1990, Nazarov
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1995), or in other works for homogeneous plates, we keep the usual forms for the first

couple of terms in (2.12), namely,

U−2(y) = w3(y)e3, (2.13)

and

U−1(y, ζ) =
2∑

i=1

ei (wi(y)− ζ∂iw3(y)) (2.14)

where h−2w3(y) and h−1w1(y), h−1w2(y) imply unknown mean values of the deflection and

longitudinal displacements in the point y ∈ ω of the middle cross-section of the plate.

Remark 2.1. Since the problem (1.3)–(1.8) is linear, one can easily achieve the conditions

(2.10) and (2.11) while multiplying the right-hand sides f and g± by a normalization factor

hm. Estimates for the remainders f̃ and g̃± in (2.10) needed to justify the asymptotic

representation (2.12), will be formulated in Sect. 4. At the same time, the equalities (2.11)

prescribe that the longitudinal and transversal forces applied to the plate are of the orders

h−1 and h0, resp. This assumption can be confirmed by everyday observation that it is

easier to bend a plate, than to stretch it. Those primitive observations are reflected by the

multipliers h−2 at w3 and h−1 at w1, w2 as well.

3. Constructing the asymptotic terms. We substitute the expressions (2.4), (2.10)

and (2.12) into the equations (1.3)–(1.5) and collect coefficients at the same powers of h.

As a result, we obtain a recursive sequence of problems to define Um, the first of which is

given by (2.6), (2.7).

The function (2.13) does not depend on ζ and, hence, satisfies the homogeneous problem

(2.6), (2.7). The problem for U−1 has the form

L0U−1 = −L1U−2 ≡ IDζAIDt
y U−2, ζ ∈ (−H−, H+),

B0
±U−1 = −B1

±U−2 ≡ ∓ID1A
±IDt

y U−2, ζ = ±H±. (2.15)

The function (2.14) satisfies (2.15) by virtue of the identity

IDt
ye3 =

2∑
i=1

IDt
ζ ζei ∂

∂yi

=
2∑

i=1

IDt
1e

i ∂

∂yi

(2.16)

which is of the permanent use throughout the paper.

According to (2.4), the function U0 is subject to the equations

L0U0 = −L1U−1− L2U−2 ≡ IDζAIDt
y U−1+ IDyA

{
IDt

ζ U−1+ IDt
y U−2

}
, ζ ∈ (−H−, H+),

B0
±U0 = −B1

±U−1 ≡ ∓ID1A
±IDt

y U−1, ζ = ±H±. (2.17)

Author’s typeset of the paper published in IMA Jl of Applied Mathematics 2000, No.64: 1–28.



8 Kirchhoff’s hypotheses and error estimation for 2d models of anisotropic inhomogeneous plates

By (2.16), (2.13) and (2.14), the sum in the curly brackets vanishes. Obviously,

∫ H+

−H−
IDζΨ(ζ) dζ = ID1

∫ H+

−H−
∂ζΨ(ζ) dζ = ID1(Ψ(H+)−Ψ(−H−)). (2.18)

When Ψ = AIDt
y U−1, the latter identity yields the compatibility condition (2.8) for the

problem (2.17).

Based on (2.14) simple algebraic transformations lead to the formula

IDt
y U−1 = Y(ζ)D(∇y)

tw, (2.19)

where D and Y are 3×6- and 6×6-matrices defined as follows:

D(∇y) =




∂1 0 α∂2 0 0 0

0 ∂2 α∂1 0 0 0

0 0 0 α∂2
1 α∂2

2 ∂1∂2




, (2.20)

Y(ζ) =



I −α−1ζI

O O


 , (2.21)

while I and O, resp., denote the unit and zero matrices of size 3×3. Employing the above

definitions we find the representation

U0(y, ζ) = V(y, ζ)D(∇y)
tw(y), (2.22)

where the 3×6-matrix V =
(
V1, . . . , V6

)
satisfies the problem

−IDζAIDt
ζV = IDζAY, ζ ∈ (−H−, H+),

±ID1A
±IDt

ζV = ∓ID1A
±Y, ζ = ±H±. (2.23)

In other words, the columns V1, . . . , V6 solve the problem (2.6), (2.7) with special right-

hand sides. We subject V1, . . . , V6 to the orthogonality conditions (2.9) and, hence, we

make the matrix-function V to be smooth in y ∈ ω. We also introduce the matrix

∼Z(y, ζ) = IDt
ζV(y, ζ) + Y(ζ) (2.24)

and mention that (2.23) is equivalent to

−IDζA(y, ζ)∼Z(y, ζ) = 0, ζ ∈ (−H−, H+) ,

±ID1A(y,±H±)∼Z(y,±H±) = 0. (2.25)
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We consider the next problem in the sequence which is intended to find U1, i.e.,

L0U1 = −L1U0 − L2U−1 + f 0 ≡ IDζAIDt
y U0 + IDyA∼ZDtw + f 0, ζ ∈ (−H−, H+),

B0
±U1 = −B1

±U0 + g0
± ≡ ∓ID1A

±IDt
y U0 + g0

±, ζ = ±H±, (2.26)

Due to the identity (2.18) with Ψ = AIDt
y U0 the compatibility conditions (2.8) for (2.26)

takes the form ∫ H+

−H−
(ei)tIDyA(y, ζ)∼Z(y, ζ) dζ Dtw + Fi(y) = 0 (2.27)

where

Fi(y) =

∫ H+

−H−
f 0

i (y, ζ) dζ + g0+
i (y) + g0−

i (y). (2.28)

It is worth noting that F3(y) = 0 by virtue of (2.11). Moreover, by employing (2.16) we

conclude that in view of (2.25)

∫ H+

−H−
(e3)tIDyA(y, ζ)∼Z(y, ζ) dζ =

2∑
i=1

∂

∂yi

∫ H+

−H−
(ei)tIDζ ζA(y, ζ)∼Z(y, ζ) dζ

= −
2∑

i=1

∂

∂yi

{∫ H+

−H−
(ei)tζ IDζA(y, ζ)∼Z(y, ζ) dζ + (ei)tζ IDζA(y, ζ)∼Z(y, ζ)

∣∣∣
ζ=H+

ζ=−H−

}
= 0.

Thus, the equality (2.27) is satisfied identically for i = 3. Therefore, the relationships (2.27)

give only two differential equations for the unknown vector-function w. The third equation

is to be derived by examining the discrepancy of the asymptotic solution U in the equations

(1.3)–(1.5). By (2.4), (2.10) we arrive at

LU− f = h−4L0U−2 + h−3
(
L0U−1 + L1U−2

)
+ h−2

(
L0U0 + L1U−1 + L2U−2

)

+h−1
(
L0U1 + L1U0 + L2U−1 − f 0

)
+ h0

(
L1U1 + L2U0 − f 0

)
+ h1L2U1 − f̃ .

The coefficients of h−4, . . . , h−1 are zero due to the definitions (2.13), (2.15), (2.17) and

(2.26) of the functions U−2, . . . , U1. Thus, we have

LU− f = −h0f 1 + h1L2U1 − f̃ , B±U− g± = −h0g1± − g̃±,

where

f 1 = IDζAIDt
y U1 + IDyA

(
IDt

ζ U1 + IDt
y U0

)
+ f 0, g1± = ∓ID1A

±IDt
y U1. (2.29)

We assume the orthogonality condition

∫ H+

−H−
f 1

3 (y, ζ) dζ + g1+
3 (y) + g1−

3 (y) = 0 (2.30)
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which is analogous to the first condition in (2.11). This, in principal, allows next term of

the ansatz (2.12) to be constructed (see Mazja et al. 1991, Ch. 16). However, since we

avoid here a discussion of junior terms of asymptotic expansion, we emphasize that (2.30)

is crucial for justification of the asymptotic procedure in Sect. 4.

By (2.18) with Ψ = AIDt
y U1 and (2.29), the condition (2.30) becomes

∫ H+

−H−
(e3)tIDyA

(
IDt

ζ U1 + IDt
y U0

)
dζ + f 0

3H = 0 (2.31)

where H = H+ + H−. Taking (2.16) and (2.26) into account we treat the left-hand side of

(2.31) in the following way:

∫ H+

−H−
(e3)tIDyA

(
IDt

ζ U1 + IDt
y U0

)
dζ =

2∑
i=1

∂

∂yi

∫ H+

−H−
(ei)tIDζ ζA

(
IDt

ζ U1 + IDt
y U0

)
dζ

=
2∑

i=1

∂

∂yi

{
−

∫ H+

−H−
(ei)tζ IDζA

(
IDt

ζ U1 + IDt
y U0

)
dζ + (ei)tζ IDζA

(
IDt

ζ U1 + IDt
y U0

) ∣∣∣
ζ=H+

ζ=−H−

}

=
2∑

i=1

∂

∂yi

{
−

∫ H+

−H−
(ei)tζ IDyA∼Z dζ Dtw +

∫ H+

−H−
ζf 0

3 (y, ζ) dζ +
(
H+g0+

3 + H−g0−
3

)}
.

Finally, the condition (2.30) is equivalent to the equality

∫ H+

−H−
ζ

2∑
i=1

∂

∂yi

(ei)tIDyA∼Z dζ Dtw + F3 = 0 (2.32)

where

F3(y) = f 0
3H +

2∑
i=1

∂

∂yi

{∫ H+

−H−
ζf 0

3 (y, ζ) dζ +
(
H+g0+

3 −H−g0−
3

)}
. (2.33)

The equation (2.32) completes the resultant system (2.27) for w.

4. The resultant problem. Let us rewrite the system (2.27), (2.32) in a more conve-

nient form. With this aim, we note that the matrix composed from lines

−(e1)tIDy , −(e2)tIDy , −ζ

(
(e1)t ∂

∂y1

+ (e2)t ∂

∂y2

)
IDy

is equal to D(−∇y)Y(ζ)t. Thus, the system in question takes the form

D(−∇y)M(y)D(∇y)
tw(y) = F(y), y ∈ ω, (2.34)

where components of the vector F = (F1, F2,F3)
t are given by (2.28) with i = 1, 2, and

(2.33), M is a matrix of size 6×6,

M(y) =

∫ H+

−H−
Y(ζ)tA(y, ζ)∼Z(z, ζ) dζ. (2.35)
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Lemma 2.1. For any y ∈ ω the matrix M(y) is symmetric and positive definite.

Proof. By (2.35) and (2.25), we find

M(y) =

∫ H+

−H−

∼Z(y, ζ)tA(y, ζ)∼Z(y, ζ) dζ,

i.e., M is a Gram’s matrix composed from the columns ∼Z1, . . . , ∼Z6 of (2.24) with the help

of the inner product
∫ H+

−H−
V (ζ)tA(y, ζ)v(ζ) dζ, v, V ∈ L2(−H−, H+)6.

Since the left 3×3-block of IDζ and the lower 3×3-blocks in Y vanish (see (2.2), (2.3) and

(2.21)), linear independence of ∼Z1, . . . , ∼Z6 ∈ L2(−H−, H+)6 follows from the same prop-

erty of the columns Y1, . . . , Y6. Thus, appealling to general properties of Gram’s matrices

completes the proof.

Based on the conditions (1.6), we supply the system (2.34) with the Dirichlet conditions

w(y) = 0, ∂νw3(y) = 0, y ∈ ∂ω, (2.36)

where ∂ν means derivation along the inward normal ν.

The matrix (2.20) preserves the algebraic completeness (Nečas 1967) that makes the

differential operator D(−∇y)
tM(y)D(∇y) to be formal positive (Nečas 1967) and to possess

the polynomial property (Nazarov 1995, Nazarov & Plamenevsky 1994). Thus, we conclude

Theorem 2.1. For any right-hand side F ∈ H`−1(ω)2 × H`−2(ω) with ` ∈ {1, 2, . . .}, the

problem (2.34), (2.36) has the unique solution w ∈ H`+1(ω)2 × H`+2(ω). There holds the

estimate ∥∥w; H`+1(ω)2 × H`+2(ω)
∥∥ 6 c

∥∥F; H`−1(ω)2 × H`−2(ω)
∥∥ (2.37)

where c is independent of F and w.

In the paper we use the notation ‖b; B‖ for the norm of an element b of a Banach space

B. Also, H`(ω) with ` ∈ {0, 1, . . .} denotes the usual Sobolev space while H−1(ω) =
o

H1(ω)∗

consists of functions Y of the form

Y = Y0 −∇y · Y ′; Y ′ = (Y1, Y2) ∈ L2(ω)2, Y0 ∈ L2(ω). (2.38)

The norm in H−1(ω) is equal to

inf {‖Y0; L2(ω)‖+ ‖Y ′; L2(ω)‖}
where the infimum is taken over all the representations (2.38). In what follows, the case

` = 1 is of the most use.
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12 Kirchhoff’s hypotheses and error estimation for 2d models of anisotropic inhomogeneous plates

3. Justification of the asymptotic procedure

1. Inequalities. We start with the formulation of a weighted inequality of Korn’s type

proved in (Nazarov 1992b) (see also Shoikhet 1973). In this section c and C denote positive

constants independent of both the function u and the parameter h ∈ (0, 1].

Lemma 3.1. Let u ∈ H1(Ωh)
3 satisfy the Dirichlet conditions (1.6). There holds the Korn’s

inequality

E(u, u; Ωh) > c u 2 (3.1)

where 2−1E(u, u; Ξ) means the elastic energy stored by the body Ξ,

E(u, v; Ξ) =
(
AD(∇x)

tu, D(∇x)
tv

)
Ξ

,

the weighted norm · in H1(Ωh)
3 is defined by

u 2 =

∫

Ωh

{ 2∑
i=1

(|∇yui|2 + h2ρ−2
h |∇yu3|2 + h2ρ−2

h |∂zui|2 + ρ−2
h |ui|2

)

+ |∂zu3|2 + h2ρ−4
h |u3|2

}
dx, ρh(y) = h + dist(y, ∂ω). (3.2)

Following the standard way to prove inequalities for traces of functions on hyperplanes

(see, e.g. Ladyzhenskaya 1973), from (3.1) and (3.2) we derive

Lemma 3.2. If u ∈ H1(Ωh)
3, then

h

N∑
n=0

{
h2

∥∥ρ−2
h u3; L2(Γ

n
h)

∥∥2
+

2∑
i=1

∥∥ρ−1
h ui; L2(Γ

n
h)

∥∥2
}

6 c u 2. (3.3)

2. Smoothness assumptions. We suppose that in the representation (2.10)

f 0 ∈ L2(Ω1)
3, g0± ∈ L2(ω)3, f 0 =

(
0, 0, f 0

3

) ∈ H−1(ω)3 , (3.4)

f 0
3 = f0

3 −∇y · f3, f0
3 ∈ L2(ω), f3 = (f1

3, f2
3)

t ∈ L2(ω)2. (3.5)

In accordance with (3.2), (3.3) and (3.1) we put

2∑
i=1

{∥∥∥ρh f̃i; L2(Ωh)
∥∥∥ + h1/2

∑
±

∥∥ρh g̃±i ; L2(ω)
∥∥
}

+h−1
{∥∥∥ρ2

h f̃3; L2(Ωh)
∥∥∥ + h1/2

∑
±

∥∥ρ2
h g̃±3 ; L2(ω)

∥∥
}

= h0Ñ. (3.6)

By the assumption that Ñ is of order h0, we express the smallness of the remainders in (3.6)

with respect to the detached terms h−1f 0, h0f̃ 0 and h0g0±. The inclusions (3.4) provide the
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components f 0, f̃ 0 and g0± with the necessary differential properties and in what follows

we use the notation

N =
∥∥f 0; L2(Ω1)

3
∥∥ +

∥∥g0±; L2(ω)3
∥∥ +

∥∥f 0; H−1(ω)
∥∥ .

By (2.28) and (2.33), we have

F1,F2 ∈ L2(ω), F3 ∈ H−1(ω) .
∥∥F; L2(ω)2 × H−1(ω)

∥∥2 6 cN. (3.7)

The estimates (3.7) and (2.37) in Theorem 2.1 furnish the relations

w1, w2 ∈ H2(ω) , w3 ∈ H3(ω) , (3.8)∥∥w; H2(ω)2 × H3(ω)
∥∥ 6 c

∥∥F; L2(ω)2 × H−1(ω)
∥∥ 6 C N. (3.9)

Let us relinquish the above convention on smoothing the matrix A. As a result, the terms

U0 and U1 in (2.12) gain jumps of their derivatives at the points z = Hn; n = 0, . . . , N − 1.

Thus, in view of (2.13), (2.14) and (2.22) the formula (3.8) leads to the inclusions

U−2 ∈ H3
(
ω→H2(∆)

)3
, U−1 ∈ H2

(
ω→H2(∆)

)3
, U0 ∈ H1(ω→H)3 , (3.10)

where Hs(ω→B) means the Sobolev space of abstract functions with the norm

‖v(y,·); Hs(ω→B)‖ =
(∫

ω

s∑

k=0

∥∥∇k
yv(y,·);B∥∥2

dy
) 1

2

(3.11)

and

H =
{
Y ∈ H1(∆) : Y ∈ H2(∆n) , n = 0, . . . , N − 1

}
,

‖Y ;H‖ =
(∥∥Y ; H1(∆)

∥∥2
+

N−1∑
n=0

∥∥Y ; H2(∆n)
∥∥2

)1/2

,

∆ = (−H−, H+), ∆n = (Hn, Hn−1), ∆ = ∆0 ∪ . . . ∪∆N−1.

By (2.14) and (2.22), IDt
y U0, IDyA

(
IDt

ζ U0 + IDt
y U−1

) ∈ L2(Ω1) and, due to (2.26), there

holds the inclusion

U1 ∈ L2(ω→H)3 . (3.12)

We emphasize that the norm of the vectors (3.10) and (3.12) are majorized by const N.
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14 Kirchhoff’s hypotheses and error estimation for 2d models of anisotropic inhomogeneous plates

3. The approximation solution and its discrepancy. The function U1 does not

possess sufficient smoothness in y while U0 does not satisfy the condition (1.6) on the

lateral side Υh = ∂ω × (−hH−, hH+) of the plate. Hence, instead of U in (2.12) we should

introduce the asymptotic solution

U′(h, x) = h−2U−2(y) + h−1U−1(y, ζ) + h0χ(y)U0(y, ζ) (3.13)

which does not contain the term U1. Here we use standard cut-off function χ0 ∈ C
∞[0,∞),

where χ0(t) = 1 for t 6 1
2
, χ0(t) = 0 for t > 1 and 0 6 χ0(t) 6 1 for t ∈ (1

2
, 1), and we put

χ(y) = 1− χ0(h
−1 dist{y, ∂ω}), χ ∈ C

∞
0 (ω) . (3.14)

The presence of χ in (3.13) and the conditions (2.36) guarantee that U′ satisfies the homo-

geneous Dirichlet conditions (1.6) on the lateral side mentioned above. Thus, according to

(3.10),

U′ ∈
o

H1(Ωh, Υh)
3 =

{
u ∈ H1(Ωh)

3 : u = 0 on Υh

}
.

We consider the discrepancy which the solution U′ leaves in the equations (1.3)–(1.5).

Using (2.4), (2.10) and (3.13) we get

LU′ − f = h−4L0U−2 + h−3
(
L0U−1 + L1U−2

)
+ h−2

(
L0χU0 + L1U−1 + L2U−2

)

+ h−1
(
L1χU0 + L2U−1 − f 0

)
+ h0

(
L2χU0 − f 0

)
+ f̃ .

The first two terms in the right-hand side of the last equality vanish due to (2.8) and (2.13).

Thus, taking into account (2.26), we arrive at

LU′ − f = h−2L0(χ− 1)U0 + h−1L1(χ− 1)U0 + h0L2(χ− 1)U0

− h−1L0U1 + h0
(
L2U0 − f 0

)
+ f̃

= L(χ− 1)U0 − h−1L0U1 + h0
(
L2U0 − f 0

)
+ f̃ . (3.15)

Similar consideration leads to the following presentation of the discrepancy of U′ in the

boundary conditions (1.4) and (1.5):

B±U′ − g± = B±(χ− 1)U0 − h0B0±U1 + g̃±. (3.16)

Analogously, the transmission conditions (1.8) on Γn
h, n = 1, . . . , N − 1 turn into the

following:

BnU′(y, hHn − 0)−Bn+1U′(y, hHn + 0)

= Bn(χ− 1)U0(y, hHn − 0)−Bn+1(χ− 1)U0(y, hHn + 0)

−h0B0,nU1(y, hHn − 0) + h0B0,n+1U1(y, hHn + 0), (3.17)
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where, in analogy with (2.5),

Bn = ID1A
nD(∇x)

t, B0,n = ID1A
nIDt

ζ .

We introduce the difference R = U′−u and suppose for a while that all functions under

consideration are smooth in y ∈ ω. This assumption does not bring a loss of generality.

Indeed, for the final completion in H1(Ωh)
3, the right-hand sides f 0, f 0

3, f̃ , etc., can be

approximated by smooth ones. The latter makes correct the integrations by parts, which

we shall use in the sequel. We stress that in order to perform the completion mentioned

above, we do not need to pay any attention to the small parameter h, because no estimation

of that type is required.

Since R vanishes on Υh, by (1.3)–(1.5) and (3.15)–(3.17) we arrive at the equality

E(R, R; Ωh) = (LR,R)Ωh
+

∑
±

(
B±R,R

)
Γ±h

+
N−1∑
i=1

{(
BiR,R

)
Γi−

h

− (
Bi+1R,R

)
Γi+

h

}
,

where Γi±
h = ω × {hHi ± 0}. Then, using (3.15), (3.16) and (3.17) we obtain

E(R, R; Ωh) =
(
L(χ− 1)U0 − h−1L0U1 + h0L2U0 − f 0 + f̃ , R

)
Ωh

+
∑
±

(
B±(χ− 1)U0 − h0B0±U1 + g̃±, R

)
Γ±h

+
N−1∑
i=1

{(
Bi(χ− 1)U0 − h0B0,iU1,R

)
Γi−

h

− (
Bi+1(χ− 1)U0 − h0B0,i+1U1,R

)
Γi+

h

}
.

We rewrite the equality in the form

E(R, R; Ωh) = I1 − I2 + I3 + Ĩ ,

where I1, I2, I3 and Ĩ are defined as follows

I1 =
(
L(χ− 1)U0, R

)
Ωh

+
∑
±

(
B±(χ− 1)U0,R

)
Γ±h

+
N−1∑
i=1

{(
Bi(χ− 1)U0, R

)
Γi−

h

− (
Bi+1(χ− 1)U0,R

)
Γi+

h

}
,

I2 = h−1
(
L0U1,R

)
Ωh

+
∑
±

(
B0±U1, R

)
Γ±h

+
N−1∑
i=1

{(
B0,iU1,R

)
Γi−

h

− (
B0,i+1U1,R

)
Γi+

h

}
,

I3 =
(
L2U0 − f 0,R

)
Ωh

, Ĩ = (f̃ , R)Ωh
+

∑
±

(
g̃±,R

)
Γ±h

. (3.18)

Integrating by parts cancels surface integrals in (3.18) and turns Iq into

I1 =
(
AD(∇x)

t(χ− 1)U0, D(∇x)
t
R

)
Ωh

, I2 = h−1
(
AIDt

ζ U1, IDt
ζR

)
Ωh

I3 =
(
AIDt

y U0, IDt
yR

)
Ωh
− (

f 0
3, R3

)
Ωh

.
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16 Kirchhoff’s hypotheses and error estimation for 2d models of anisotropic inhomogeneous plates

Since f 0 does not depend on ζ,

(
f 0

3,R3

)
Ωh

= H
(
f 0

3, R3

)
ω

, where R3(y) =
1

H

∫ H+

−H−
R3(y, ζ) dζ and H = H+ + H−.

Hence, multiplying the orthogonality condition (2.31) by R3(y) and integrating by parts in

ω we arrive at the equality

(
A

(
IDt

ζ U1 + IDt
y U0

)
, IDt

ye3R3

)
Ωh

=
(
f 0

3, R3

)
Ωh

.

Then, after some algebraic manipulations, we obtain

E(R, R; Ωh) = J1 + J2 + J3 + J̃ , (3.19)

where J̃ = Ĩ and

J1 =
(
AD(∇x)

t(χ− 1)U0, D(∇x)
t
R

)
Ωh

,

J2 = −I2 −
(
AIDt

ζ U1, IDt
yR

)
Ωh

= − (
AIDt

ζ U1, D(∇x)
t
R

)
Ωh

,

J3 = I3 +
(
AIDt

ζ U1, IDt
yR

)
Ωh

=
(
A

(
IDt

ζ U1 + IDt
y U0

)
, IDt

y(R− e3R3)
)
Ωh

. (3.20)

We stress that the inclusions R ∈ H1(Ωh)
3 and (3.10), (3.11) ensure that all multipliers in

the scalar products (3.20) belong to L2(Ωh). Thus, by the completion in H1(Ωh)
3 we can

now remove the above assumption on the smoothness in y.

4. Estimation of the discrepancies. Let us evaluate the terms in the right-hand side

of (3.19). Positive definiteness of the matrix A yields the inequality

E(R, R; Ωh) =
(
AD(∇x)

t
R, D(∇x)

t
R

)
> c

∥∥D(∇x)
t
R; L2(Ωh)

∥∥2
. (3.21)

Now,

|J1| 6 c E(R, R; Ωh)
1
2

∥∥D(∇x)
t(χ− 1)U0; L2(Ωh)

∥∥ . (3.22)

Furthermore,

D(∇x)
t(χ− 1)U0 = (IDt

yχ)U0 + h−1(χ− 1)IDt
ζ U0 + (χ− 1)IDt

y U0. (3.23)

By virtue of (3.10) the formula

∥∥(χ− 1)IDt
y U0; L2(Ωh)

∥∥ 6 h1/2
∥∥(χ− 1)IDt

y U0; L2(Ω1)
∥∥ 6 c h1/2N

is obvious where the term h1/2 appears due to the small thickness h of the plate Ωh. The

first two terms in the right-hand side of (3.23) contain h−1 (see (3.14)). To estimate the

terms, we use a variant of Hardy’s inequality given by the following
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Lemma 3.3. For any v ∈ H1(Ωh), there holds the inequality

∫

Ω1

(1− χ(y))|v(y, ζ)|2 dy dζ 6 C h

∫

Ω1

(|∇yv(y, ζ)|2 + |v(y, ζ)|2) dy dζ. (3.24)

Proof. We denote by ω` ⊂ IR2 a subdomain of ω formed by the lines dist{y, ∂ω} = const < `.

Obviously, it is sufficient to prove (3.24) with h 6 `. Let (s, ν) be a coordinate system given

by these lines and the lines orthogonal to them so that ∂ω is represented by points (s, 0).

For a function v(t) ∈ H1(0, `) we have

h−1

∫ h

0

|v(ν)|2 dν 6 2h−1

∫ h

0

(|v(0)|2 + |v(ν)− v(0)|2) dν

6 2|v(0)|2 + 2h

∫ h

0

ν−2|v(ν)− v(0)|2 dν. (3.25)

The inclusion H1(0, `) ⊂ C(0, `) yields the estimate

|v(0)| 6 c
∥∥v; H1(0, `)

∥∥ . (3.26)

Using Hardy’s inequality and the cut-off function χ0 we obtain

∫ h

0

ν−2|v(ν)− v(0)|2 dν 6
∫ `

0

∣∣χ0(`
−1ν)[v(ν)− v(0)]

∣∣2 ν−2 dν

6 c

∫ `

0

∣∣∂ν

{
χ0(`

−1ν)[v(ν)− v(0)]
}∣∣2 dν 6 C

∥∥v; H1(0, `)
∥∥2

. (3.27)

Combining (3.25)–(3.27) we arrive at the inequality

h−1

∫ h

0

|v(ν)|2 dν 6 c
∥∥v; H1(0, `)

∥∥2
.

Since |∂tv(y)|2 6 |∇yv(y)|2, integrating in z and s completes the proof.

Applying the inequality (3.24) to estimate the first two terms in the right-hand side of

(3.23) and taking into account the inclusion (3.10), we obtain

|J1| 6 c E(R, R; Ωh)
1
2

∥∥∥U0; H1
(
ω→H1(∆)

)3
∥∥∥ 6 C E(R, R; Ωh)

1
2 N. (3.28)

Analogously, with (3.12) we gain

|J2| 6
∥∥D(∇x)

t
R; L2(Ωh)

∥∥×
∥∥AIDt

ζ U1; L2(Ωh)
∥∥

6 c E(R, R; Ωh)
1
2 h

1
2

∥∥∥U1; L2

(
ω→H1(∆)

)3
∥∥∥ 6 C h

1
2 E(R, R; Ωh)

1
2 N. (3.29)
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18 Kirchhoff’s hypotheses and error estimation for 2d models of anisotropic inhomogeneous plates

In order to process the term J3 in (3.20) we set J3 = J 3 + J ′3, where

J 3 = J3(R3) =
(
A

(
IDt

ζ U1 + IDt
y U0

)
, IDt

ye3(R3 −R3)
)
Ωh

,

J ′3 = J3(R1,R2) =
(
A

(
IDt

ζ U1 + IDt
y U0

)
, IDt

y

(
e1R1 + e2R2

))
Ωh

, i = 1, 2.

By virtue of (1.2) and (1.1) we have
∣∣IDt

y

(
e1R1 + e2R2

)∣∣2 = ε11(R)2 + ε22(R)2 + 2ε12(R)2

and, owing to (3.21), we get

∥∥IDt
y

(
e1R1 + e2R2

)
; L2(Ωh)

∥∥ 6 c E(R, R; Ωh)
1
2 .

The latter and the inclusions (3.10), (3.12) furnish the formula

|J ′3| 6 c h
1
2 E(R, R; Ωh)

1
2 N. (3.30)

An estimation of J 3 needs auxiliary inequalities.

Lemma 3.4. There holds the inequalities

‖∂i(R3 −R3); L2(Ωh)‖2 6 c E(R, R; Ωh) , i = 1, 2 (3.31)

with the constant c, independent of R ∈
o

H1(Ωh, Υh) and h ∈ (0, 1].

Proof. We denote

R̂(y, ζ) = R(y, ζ)− 1

H

∫ H+

−H−
R(y, ζ) dζ, R̂3 = R3 −R3. (3.32)

Evidently,

‖R̂; L2(Ω1)‖2 = ‖R; L2(Ω1)‖2 − 1

H

(∫ H+

−H−
R(y, ζ) dζ

)2

6 ‖R; L2(Ω1)‖2. (3.33)

Since R = 0 on Υh, the extension of R by zero on the layer Πh = {x : y ∈ IR2,

−H− < h−1z < H+} belongs to H1(Πh). We cover the closure ω by a family of squares Qi
h

of size h×h and consider one of the corresponding parallepipeds C i
h = Qi

h × (−hH−, hH+).

On Ch = Ci
h the vector-function R can be represented in the form

R(x) = R⊥(x) + d(x)ψ,

where

d(x) =




1 0 −αx2 αx3 0 0

0 1 αx1 0 −αx3 0

0 0 0 −αx1 αx2 1




, (3.34)
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and the column ψ ∈ IR6 is chosen such that

∫

Ch

d(x)tR⊥(x) dx = 0. (3.35)

The latter leads to the algebraic system

dCψ =

∫

Ch

d(x)tR(x) dx,

where the 6×6-matrix

dC =

∫

Ch

d(x)td(x) dx

is non-singular because

det(dC) =
α6h24

864
H6 (1 + H2)2.

By virtue of (3.35) the Korn’s inequality holds

E
(
R⊥, R⊥; Ch

)
> c

{∥∥∇xR
⊥; L2(Ch)

∥∥2
+ h−2

∥∥R⊥; L2(Ch)
∥∥2

}
(3.36)

(see e.g. Kondrat’ev & Oleinik 1988, Nečas 1967 and Lemma 2.2 in Nazarov 1997c).

Note the constant c does not depend on h because the change of variables x 7→ ξ =

(h−1[y − yi], h−1z), where yi is the centre of Qi
h, turns Ch into the standard parallepiped

(−1/2, 1/2)2 × (−H−, H+). Moreover, the factor h−2 appears in (3.36) due to the inverse

change ξ 7→ x.

Since D(∇x)d(x) = 0, by using (3.33) we conclude that

E(R, R; Ch) = E
(
R⊥, R⊥; Ch

)
> c

∥∥∂iR
⊥; L2(Ch)

3
∥∥2 > c

∥∥∥∂iR̂
⊥
3 ; L2(Ch)

3
∥∥∥

2

, i = 1, 2.

(3.37)

By definitions (3.32) and (3.34), one immediately observes that the matrix d̂(x) does

not depend on y. Hence,

∂iR̂
⊥
3 = ∂iR̂3, i = 1, 2,

and by summing (3.37) over all the cells Ci
h we obtain the inequality (3.31).

Lemma 3.4 and the inclusions (3.10), (3.12) yield the formula

|J 3| 6 c h
1
2 E(R, R; Ωh)

1
2 N, (3.38)

needed to estimate the term J3 in (3.19). It remains to mention that due to (3.1) and (3.3)

the relationship (3.6) means that

|J̃ | 6 c h0E(R, R; Ωh)
1/2

Ñ. (3.39)
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5. Final theorems on approximation. Collecting the estimates (3.28), (3.29), (3.30),

(3.38) and (3.39) for J1, J2, J3 and J̃ , we find the majorant c h0E(R, R; Ωh)
1/2 (N + Ñ) for

the modulo of the right-hand side of (3.19). Thus, the inequalities (3.1) and (3.21) finish

the proof of the following assertion.

Theorem 3.2. Let the right-hand sides of the problem (1.3)–(1.6) satisfy the conditions

(2.10), (2.11), (3.4) and (3.6). Then the solution u ∈
o

H1(Ωh, Υh) of the problem and the

approximation solution (3.13) are in the relationship

u− U′ +
∥∥ε(u)− ε(U′); L2(Ωh)

∥∥ 6 c h0(N + Ñ) (3.40)

where the constant c is independent of h ∈ (0, 1), u, and the entries of the representation

(2.10) of the right-hand sides.

In the following theorem we remove the cut-off function χ from the approximation of

the displacement and strain fields u and ε(u).

Theorem 3.3. Under the hypotheses of Theorem 3.2 there holds the inequality

u− h−2U−2− h−1U−1− h0U0 +
∥∥ε(u)− h−1(IDt

ζV + Y)D(∂y)
tw; L2(Ωh)

∥∥
6 c h0(N + Ñ) (3.41)

where w is a solution of the resultant problem (2.34), (2.36); Uj are indicated in (2.13),

(2.14), (2.22); the matrices IDζ , D and Y, V are defined in (2.2), (2.20) and (2.21), (2.23).

Proof. We start with the obvious inequality

u− h−2U−2− h−1U−1− h0U0 6 u− U′ + (1− χ)U0 . (3.42)

Taking into account the inequality (3.1) we have

(1− χ)U0 2 6 c E
(
(1− χ)U0, (1− χ)U0; Ωh

)
6 C

∥∥D(∇x)
t(1− χ)U0; L2(Ωh)

∥∥2
.

The last norm has been appeared in (3.22) and it was estimated in (3.28) as follows:

∥∥D(∇x)
t(1− χ)U0; L2(Ωh)

∥∥ 6 c
∥∥∥U0, H1

(
ω→H1(∆)

)3
∥∥∥ 6 C N.

Thus, combining (3.40) and (3.42), we arrive at the estimate

u− h−2U−2− h−1U−1− h0U0 6 c h0(N + Ñ).

Let us estimate the second term in the left-hand side of (3.41). We have

ε(U′) = D(∇x)
tU′ =

(
IDt

y + h−1IDt
ζ

) (
h−2U−2 + h−1U−1 + h0χU0

)

= h−3IDt
ζ U−2 + h−2

(
IDt

y U−2 + IDt
ζ U−1

)
+ h−1

(
IDt

y U−1 + χIDt
ζ U0

)
+ h0IDt

yχU0. (3.43)
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The first two terms in the right-hand side of the last formula cancel by (2.13), (2.16) and

(2.14). Taking into account (2.19) and (2.22), we obtain

ε(U′) = h−1
(
IDt

ζV + Y
)

D(∇y)
tw + h−1(χ− 1)IDt

ζ U0 + h0IDt
y(χU0).

The last two terms in the right-hand side have been appeared in (3.23) and they were

majorized by c h0N. Thus, in view of (3.40), we conclude the inequality (3.41).

Corollary 3.4. Under the hypothesis of Theorem 3.2 the displacement field u satisfies

the estimates

h
∥∥u3 − h−2w3; L2(Ωh)

∥∥ +
∥∥ui − h−1(wi − ζ∂iw3); L2(Ωh)

∥∥ 6 c h0(N + Ñ). (3.44)

Proof. It is sufficient to mention that, first, the weight factors ρ−2
h and ρ−4

h in (3.2) are

larger than a positive constant and, secondly, the formulae (2.22) and (3.9) yield
∥∥U0; L2(Ωh)

∥∥ 6 c h1/2
∥∥D(∇y)

tw; L2(ω)
∥∥ 6 c N.

4. The Kirchhoff hypotheses and explicit formulae for

laminated plates

1. Discussion. Direct calculations show that each of the expressions

h−2U−2 , h−1U−1 , h0U0 ,
∥∥h−1(IDt

ζV + Y)D(∂y)
tw; L2(Ωh)

∥∥

is of order h−1/2‖w; H2(ω)2×H3(ω)‖. The factor h−1/2, indeed, confirms that all the asymp-

totic terms in (3.41) were detached correctly and the estimate (3.41), hence, justifies the

asymptotic forms constructed. Moreover, the simplification (3.44) for the asymptotics of

the displacement field holds true only in estimation of L2(Ωh)-norms while in the norm (3.2)

which contains derivatives of u and is equivalent to H1(Ωh)-norm, the term U0 cannot be

ignored. The asymptotics of strains figured in (3.41) is also calculated with the help of U0

(see (3.43)).

In the vicinity of the lateral side Υh of the plate Ωh there appears the boundary layer

phenomenon (see, e.g. Friedrichs & Dressler 1961, Gol’denveizer 1962, Gol’denveizer &

Kolos 1965, Zorin & Nazarov 1989, Mazja et al. 1991, Ch. 16, Dauge & Gruais 1995,

Dauge et al. 1998, etc.). Since the norms · and ‖ε(·); L2(Ωh)‖ of the leading asymptotic

term of the boundary layer type is of order h0 (see, e.g., Zorin & Nazarov 1989 for an

isotropic plate), the estimate (3.41) is asymptotically precise which means that the majorant

of (3.41) cannot contain the factor o(h0) as h → 0.

We emphasize that in the majorants of (3.40), (3.41) and (3.44), the values N and Ñ

absorb completely the dependence on the right-hand sides of the initial problem (1.3)–

(1.6) while the constants c depend only on the cross-section ω of the plate and the elastic
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moduli introduced with the matrix A(y, ζ). Moreover, the obtained estimates are sharp

with respect to the smoothness properties prescribed by (3.4) and (3.5). Namely, if for

simplicity g± = 0, f̃ = 0, then a solution in H1(Ωh)
3 of the problem (1.3)–(1.6) exists

even in the case f 0 ∈ H−1(Ωh)
3 while one can construct a counter-example such that the

estimates (3.40) and (3.41) loose their validity due to internal boundary layers appearing

near the subsets of the plate where the function f 0 is not smooth (see, e.g. Nazarov &

Semenov 1981, Aldoshina & Nazarov 1998).

We also note that the difference (1 − χ)U0 of the approximations employed in Theo-

rems 3.2 and 3.3 has the norm (1 − χ)U0 of the same order h0 as the leading boundary

layer term mentioned above. Thus, the boundary layer takes the role of the cut-off function

χ in (3.13), i.e. compensation of the discrepancy generated by U0 in the Dirichlet conditions

(1.6).

2. Justification of the hypotheses. A traditional derivation of the system (2.34),

which is formal in the sense that it is not provided with estimates of precision, needs

two hypotheses on the stress-strain state in a plate. Those are known as the Kirchhoff

hypotheses and are naturally referred to as the kinematic and static ones. The kinematic

hypothesis declares that, with the precision of the two-dimensional model, the components

of the displacement field u can be approximated by the following functions, linear in z:

ui(y, z) ∼ ui(y)− z∂iu3(y), i = 1, 2; u3(y, z) ∼ u3(y). (4.1)

Evidently, the inequality (3.44) justifies this hypothesis with

ui(y) = h−1wi(y), u3(y) = h−2w3(y). (4.2)

The static hypothesis predicts that the stresses

σ′′(u) = (σ13(u), σ23(u), σ33(u))t

vanish in the plate Ωh with the same precision. In order to prove this hypothesis, it is

sufficient to note that, by virtue of the definition (1.1), (2.2) and the estimate (3.41),

(
0, 0, 0, σ′′(u)t

)t
= ID1σ(u),

∥∥ID1σ(u)− h−1ID1A
(
IDt

ζV + Y
)

D(∇y)
tw; L2(Ωh)

∥∥ 6 c h0(N + Ñ).

Since, owing to the next lemma, the expression Σ = ID1A
(
IDt

ζV + Y
)

vanishes, the latter

inequality is but a mathematical interpretation of the static Kirchhoff hypotheses.

Lemma 4.1. The equality Σ(y, ζ) = 0 is valid with any (y, ζ) ∈ Ω1.
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Proof. The equality follows from the fact that in terms of Σ the problem (2.23) takes the

form

∂ζΣ = 0, ζ ∈ (−H−, H+) ; Σ = 0, ζ = ±H±.

The reason to call (4.1) a kinematic hypothesis is a well-known contradiction between

the Kirchhoff hypotheses which results in the fact that the representation (4.1) is valid

for manipulations with the displacements only. Indeed, if one calculates the stresses in

accordance with (4.1) and (4.2), in view of (2.19) one obtains the relationship

σ(u; y, z) ∼ A(y, z)Y(ζ)D(∇y)
tw(y) (4.3)

which differs from the formula justified by (3.41)

σ(u; y, z) ∼ A(y, ζ)
(
IDt

ζV(y, ζ) + Y(y)
)

D(∇y)
tw(y). (4.4)

The presence of the expression IDt
ζV in (4.4) is stipulated by impossibility to ignore the term

U0 in differentiation of the ansatz (2.12) as it was discussed in the previous subsection. It

is to stress that some conclusions of the works which overlook the contradiction and use the

“approximation” (4.3) happen to be wrong (see, e.g. Zorin & Nazarov 1989, where such

mistakes are discussed at length).

3. Explicit formulae. In this section we use the following notations:

σ(1) = (σ1, σ2, σ3)
t, ε(1) = (ε1, ε2, ε3)

t, ε(2) = (ε4, ε5, ε6)
t,

A =




A(11) A(12)

A(21) A(22)


 , Y′(ζ) =

(
I,−α−1ζI

)
, (4.5)

where A(ij) stand for 3×3-blocks of the Hooke’s matrix A. Let

ε̃ = h−1
(
IDt

ζV + Y
)

D(∇y)
tw, σ̃ = Aε̃

(see (3.41)). By Lemma 4.1 we conclude

σ̃(1) = A(11)ε̃(1) + A(12)ε̃(2),

0 = A(21)ε̃(1) + A(22)ε̃(2).

Thus,

ε̃(2) = −A−1
(22)A(21)ε̃(1). (4.6)

Since the left 3×3-block of ID1 vanishes, we obtain

ε̃(1) = h−1Y′Dtw. (4.7)
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Finally, combining (4.6) and (4.7) we arrive at

ε̃ = h−1E(y, ζ)D(∇y)
tw(y),

where

E(y, ζ) =
(
I,−A−1

(22)(y, ζ)A(21)(y, ζ)
)t

Y′ =

=




I −α−1ζI

−A−1
(22)(y, ζ)A(21)(y, ζ) α−1ζA−1

(22)(y, ζ)A(21)(y, ζ)


 . (4.8)

From the definition of ε̃ and the formulae (2.35), (2.24) we derive the representation

MDtw = h

∫ H+

−H−
YtAε̃ dζ =

∫ H+

−H−
YtAE dζ Dtw. (4.9)

By using (2.21), (4.5) and (4.8) we immediately obtain

YtAE =




A −α−1ζ A

−α−1ζ A α−2ζ2 A


 , (4.10)

where A is a matrix of size 3×3,

A(y, ζ) = A(11)(y, ζ)− A(12)(y, ζ)A−1
(22)(y, ζ)A(21)(y, ζ). (4.11)

Finally, (4.9) and (4.10) give the formulae presentations

M(11) =

∫ H+

−H−
A(ζ) dζ, M(12) = M(21) = −α−1

∫ H+

−H−
ζ A(ζ) dζ,

M(22) = α−2

∫ H+

−H−
ζ2 A(ζ) dζ, (4.12)

for 3×3-blocks of the matrix M,

M =



M(11) M(12)

M(21) M(22)


 .

Note that with another argument the formulae of type (4.12) were obtained in (Zorin 1987).
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4. Laminated plates. Let us focus on the case of laminated plates, when the matrix

A is piecewise constant in z, i.e. An = An(y), n = 1, . . . , N . By calculation of integrals in

(4.12) we have

M =
N∑

n=1

Mn,

where

Mn =




An (Hn −Hn−1) −α−1 An
(
H2

n −H2
n−1

)

−α−1 An
(
H2

n −H2
n−1

)
1
3
α−2 An

(
H3

n −H3
n−1

)


 (4.13)

and An = A(ζ) with ζ ∈ (Hn, Hn−1).

Of interest is to find a representation of M in terms of the matrices M0
n

M0
n =




An O

O 1
6
An


 , (4.14)

where M0
n corresponds to the plate ω × (−h/2, h/2) made of material with the Hooke’s

matrix An. We define the thickness and the middle plane of the n-th layer:

hn = Hn −Hn−1, H∗
n =

Hn + Hn−1

2
.

Then, the matrix Mn takes the form

Mn = hn diag {A,A}Kn,

where diag{A,A} is a 6×6-matrix composed from the matrix (4.11),

Kn =




I −α−1H∗
n I

−α−1H∗
n I α−2(H∗

n
2 + h2

n/12) I


 = Lt

n Ln, Ln =



I −α−1H∗

n I

O −hn6−
1
2 I


 .

Then,

Mn = hnLt
n diag {A,A}Ln.

Since

diag {A,A} = diag
{
I, 6

1
2 I

}
Mn

0 diag
{
I, 6

1
2 I

}
,

diag
{
I, 6

1
2 I

}
= diag

{
1, 1, 1, 6

1
2 , 6

1
2 , 6

1
2

}
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we thus arrive at

M =
N∑

n=1

hnJ
t
nMn

0Jn, Jn =



I −α−1H∗

n I

O −hn I


 . (4.15)

We recall that the n-th summand is the matrix (4.13) constructed for the n-th isolated

layer of the laminated plate and, thus, the bordering by hnJ
t
n and Jn in (4.15) translates

the matrix (4.14) of the resultant system (2.34) for the plate ω× (−h/2, h/2) to the matrix

of the system for the plate ω × (hHn−1, hHn). The formula (4.15) means that the matrix

M for laminated plates represents a sum of analogous matrices for its isolated layers.

We emphasize that the above formulae manifest changes in the matrix M due to a shift

of the reference plane.

5. Properties of the mapping A 7→ M. The formulae (4.11) and (4.12) defines

mapping M : A 7→ M where the matrix M contains 6 independent components only, whilst

A has 21 different components. Thus, there exists a local 15-parameter transformation of the

matrix A which leaves the corresponding matrix M unchanged. Using (4.12) we describe

the transformation with the help of two 3×3-matrices B and C where B is arbitrary non-

singular and C is arbitrary symmetric, such that A(22) + C is non-singular. Then, the

9-parameter transformation A → A′ can be introduced as follows

A′
(11) = A(11), A′

(22) = BtA(22)B, A′
(12) = A(12)B, A′

(21) = BtA(21).

Other six parameters are taken into account by the transformation

A′
(22) = A(22) + C, A′

(12) = A(12), A′
(21) = A(21),

A′
(11) = A(11) + A(12)

{(
A(22) + C

)−1 − A−1
(22)

}
A(21).

We emphasize that according to (4.11) and (4.12) the upper right 3×3-block of the

matrix M turns out to be symmetric. Thus, even the plates of the most general structure

we have considered here do not exhaust all symmetric, positive definite matrices M in

(2.34). Nevertheless, the hypothesis can be formulated that arbitrary symmetric matrix M
may appear in (2.34) as a result of homogenization of a thin cylindrical plate with highly

oscillating elastic properties (see, e.g. Caillerie 1984, Nazarov 1995).
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