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Trapped modes, i.e. localized unforced oscillations of fluid in presence of floating structures
and bottom topography, have been a topic of considerable interest over many years and sub-
stantial effort has been put, for a variety of different geometries, into finding the solutions and
conditions of their existence or absence. However, the class of geometries having cusp points has
been avoided in the known proofs of non-existence of trapped modes, though water-wave prob-
lems for such structures have been considered and examples of trapped modes are known. In the
work we consider submerged obstructions having exterior cusp points and establish absence of
trapped modes for some classes of such geometries. For this purpose we derive a generalization of
the so-called Maz’ya’s integral identity, which in the case of geometries with cusps also includes
algebraic terms containing coefficients of local asymptotics of the trapped mode potential near
cusp points of the contour.

1 Introduction

In the paper we consider a three-dimensional ocean with cylindrical boundaries; examples

of such geometry are a fluid layer with long canyons or ridges, long circular cylinders

submerged parallel to the free surface and a plane beach. We are interested in modes

of fluid oscillation which are trapped by the structure, i.e. in unforced time harmonic

motions which do not radiate energy to large distances and which are spatially periodic

along the generator of the cylindrical geometry.

In the context of the standard linearised surface wave theory it has been found that

some cylindrical structures can support trapped modes; the origin of the theory goes

back to Stokes edge waves of 1846 and the results of Ursell [1, 2] and Jones [3] in 1951–

1953. Since that time a number of papers have appeared concerned with constructing

trapped modes and proving their existence or establishing their non-existence in a variety

of problems of the surface wave theory. We shall not discuss the results here for reasons
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2 O.V. Motygin

of space and because an extensive review of the subject can be found in [4]. It is worth

noting that in many cases non-existence of trapped modes is equivalent to uniqueness for

non-homogeneous problems with wave propagation to infinity.

In the present work we consider the case of submerged obstructions having exterior

cusp points. Water-wave problems for this class of obstructions have been under consid-

eration and examples of trapped modes for this class of geometry have been constructed

(see [5, 6] and references therein). However, this class of obstructions is avoided in the

known proofs of non-existence of trapped modes. As an exception, the paper [7] should be

mentioned, where a uniqueness proof is given for the water-wave problem with a vertical

shell in a layer of a constant depth.

In this paper we find some classes of obstructions with exterior cusp points which

do not support trapped modes. These results are presented in Theorems 4.1, 5.1 and

5.2. First of the assertions deals with geometries having horizontal exterior cusps and

guarantees absence of trapped modes if horizontal cross-section of the water domain at

any depth h consists of one interval γh and if all the intervals γh, where h comes through

the fluid depth, have a common point. An example of such a geometry is shown in fig. 1.

Theorems 5.1 and 5.2 are devoted to the case of normal incidence of waves to obstructions

having non-horizontal cusps. Formulations of the theorems involves special notations and,

hence, we only mention here one particular consequence of the assertions: one flat barrier

adjoint and inclined at any angle to a horizontal bottom cannot support trapped modes.

All the results are valid for any frequency of harmonic oscillations of the fluid.

In order to prove the theorems we apply a generalization of the integral identity,

which was suggested by Maz’ya in [8, 9] (in a weaker form in [10]). The identity involves

an arbitrary vector field and an arbitrary function and states that a quadratic form in

the potential of trapped mode is equal to zero. Thus, the potential is equal to zero if the

function and the vector field in the domain containing fluid can be chosen such that the

quadratic form is non-negative, or, in other words, the vector field nowhere enters the

obstruction. Interesting analysis of the scheme can be found in [4,11,12,13], where some

interpretations and generalizations of the Maz’ya identity are given. For the geometries

considered in the present paper the identity also includes coefficients of local asymptotics

of the potential near the cusp points of the contour. The local asymptotics derived in

the present work can also be used to generalize other known proofs based on integral

identities, e.g. the scheme applied by Simon and Ursell in [14].

Now, we give a brief exposition of the paper. In § 2 we introduce notations and

present the mathematical problem for trapped modes. Maz’ya’s identity is presented in

§ 3. The identity is generalized for the case of contours with horizontal cusp points in § 4,

where, thus, a class of contours, for which the identity guarantees non-existence of trapped

modes, is described. Some classes of geometries having non-horizontal cusp points and

not supporting trapped modes are found in § 5. The local asymptotics of trapped mode

potential near a corner point of the contour is derived in Appendix A.
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Figure 1: A sketch of geometric notation

2 Statement of the problem

We suppose that the fluid occupies a cylindrical domain of the form W × IR, where W

denotes an unbounded open set in IR2. We decompose the boundary of W as F ∪ S,

where F is the mean free surface and S is the wetted part of submerged obstruction

including the bottom and some submerged obstacles. The surface S is assumed to be

piecewise smooth and is allowed to have corner and cusp points, so that any finite part

of the contour contains only a finite number of corner points.

Let t be a time variable and a Cartesian coordinate system (x, y, z) be attached to

the free surface of the fluid so that y is the vertical coordinate decreasing with depth

and equal to zero in the free surface and x, z are horizontal coordinates, such that the

geometry of obstruction is constant in z. The notation is illustrated in fig. 1, where the

case of constant-depth ocean with a deepening is shown.

The fluid is assumed to be ideal incompressible. Under these assumptions its irrota-

tional unforced motion can be described in frame of the linearised surface wave theory

(see e.g. [15, ch. 3]) by a velocity potential U(x, y, z, t) satisfying the equations

(
∂2

x + ∂2
y + ∂2

z

)
U = 0 in W × IR, (2.1)

∂2
t U + g∂yU = 0 on F × IR, (2.2)

∂nU = 0 on S × IR, (2.3)

where we use the notation ∂a for the partial derivative in variable a, g is the acceleration

due to gravity and n is the unit normal vector directed into the domain W .

In the present note we are interested in trapped modes, i.e. solutions of the form

U(x, y, z, t) = Re
{
u(x, y)ei(kz−ωt)

}
, (2.4)

where k and ω are real numbers and u(x, y) is a real-valued function submitted to the

‘localization property’ i.e. the condition of finiteness of energy over the cross-section of
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the fluid domain: ∫

W

(|∇u|2 + ν2u2
)
dx dy < ∞. (2.5)

A solution to (2.1)–(2.5) corresponds to a harmonic wave propagating in the z-direction

without distortion and having finite transverse energy.

It follows by substituting (2.4) into (2.1)–(2.3), that the potential u, which is defined

on W , satisfies the following boundary value problem

∇2u− k2u = 0 in W, (2.6)

∂yu− νu = 0 on F, (2.7)

∂nu = 0 on S, (2.8)

where ∇ = (∂x, ∂y) and ν = ω2/g. We mean a solution of (2.5)–(2.8) in the classical

sense, so that u ∈ C2(W ) ∩ C(W ) and the potential u has regular normal derivative at

all regular points of contours where the normal is well-defined.

The problem (2.6)–(2.8) also arises when considering surface waves in an infinitely long

channel with vertical walls z = ±b spanned by a horizontal cylindrical obstruction. In this

case the velocity potential can be fixed in the form U(x, y, z, t) = Re
{
u(x, y)eiωt

}
cos kz,

where kb = nπ, (n = 1, 2, . . .), so as to satisfy (2.8) on the walls. A similar solution with

a sine dependence on z can be taken provided kb = (2n− 1)π/2, (n = 1, 2, . . .).

It is of note that non-existence of the trapped modes is closely related to the uniqueness

in problems describing radiation and diffraction phenomena. Let, for example, the domain

W be a layer of fluid (see fig. 1), having a constant depth h± for ±x > ±a±. Consider the

problem of water waves radiated on the depth profile and having wavenumber ν and whose

crests make an angle θ with the plane Oxy, so that k = ν sin θ in (2.4). The problem for

the potential u consists of (2.6), (2.7), the non-homogeneous Neumann condition ∂nu = f

on S and the condition at infinity ∂xu ∓ i`±u → 0 as x → ±∞, where `± =
(
λ2
± − k2

) 1
2

and λ± is the unique, real, positive root of the equation ν = λ± tanh λ±h±. Since the

contours are assumed to have corner and cusp points we also demand u ∈ H1
loc(W ). Then,

following the scheme of [10, § 2] or [11, § 2] and taking into account the asymptotics at the

cusp points in the way we use in § 4 of this work, it can be shown that the difference of

two solutions to the problem in question satisfies the condition (2.5) and, thus, represents

a trapped mode.

3 Maz’ya’s integral identity

In this section we present a version of the integral identity known as Maz’ya’s one. In

order to obtain the variant of the identity we follow the derivation of [4, § 4.2], where

the identity was applied for the case k 6= 0 in the condition (2.6), and the scheme of [10]

to make the identity applicable for obstacles having outlets to infinity. We consider a
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Figure 2: Auxiliary geometrical notation

real vector field V = (V1, V2) and a real function H defined on W . We also assume that

Vi ∈ C1
(
W

)
, H ∈ C2

(
W

)
and start with the identity

2
(
V ·∇u + Hu

)∇2u =2∇·{(
V ·∇u + Hu

)∇u
}

+ (Q∇u) ·∇u

−∇·{|∇u|2V + u2∇H
}

+ u2∇2H,
(3.1)

where the elements of the matrix Q are defined as follows:

Qij =
(∇·V − 2H

)
δij −

(
∂xj

Vi + ∂xi
Vj

)
, i, j = 1, 2, x1 = x, x2 = y, (3.2)

and δij is the Kroneker delta.

Further we shall integrate the identity (3.1) over WR, where WR is a domain bounded

internally by the obstruction D with the wetted surface S = ∂D, externally by a part of

semicircle CR = {|x+iy| = R, y 6 0}\D and by a part of the free surface FR from above

(see fig. 2). We also use the notation SR = S ∩ {(x, y) : |x + iy| 6 R, y 6 0}. Then,

taking into account the condition (2.6) we have

0 =

∫

WR

{
(Q∇u) ·∇u− 2k2u (V ·∇u + Hu) + u2∇2H

}
dx dy

+

∫

CR∪SR

{|∇u|2 V ·n + u2∂nH − 2∂nu (V ·∇u + Hu)
}

ds

+

∫

FR

{
2∂yu (V ·∇u + Hu)− |∇u|2 V2 − u2∂yH

}
dx.

(3.3)

It is to note at this point that though the potential u is continuous over the surface of

obstruction, its derivatives can be unbounded at corners. From results of Appendix A it

follows that the potential is O(ρπ/α) and its derivatives are O(ρπ/α−1) as ρ → 0, where ρ

denotes the radial distance from the corner of angle α, the angle is measured through the

fluid domain. Under the assumption that α ∈ (0, 2π) for any corner point of S, the latter
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estimates are sufficient to ensure the existence of integrals in (3.3) and those appearing

subsequently in this section.

Using the condition (2.7) we write
∫

FR

∂yu
[
V1∂xu + V2∂yu + Hu

]
dx = ν

∫

FR

[
u2 (νV2 + H) + u V1 ∂xu

]
dx, (3.4)

where

2

∫

FR

uV1 ∂xu dx =

∫

FR

V1 ∂x

(
u2

)
dx =

[
u(x, 0)

]2
V1(x, 0)

∣∣∣
x=R

x=−R
−

∫

FR

u2∂xV1 dx. (3.5)

Also, we have

2

∫

WR

u V ·∇u dx dy =

∫

WR

V ·∇(
u2

)
dx dy

= −
∫

WR

u2∇·V dx dy +

∫

FR

u2 V2 dx−
∫

CR∪SR

u2 V ·n ds

(3.6)

Using the formulas (3.4)–(3.6) to transform (3.3) we find
∫

FR

{
u2

[
2ν2V2 + 2νH − ν∂xV1 − k2V2 − ∂yH

]− |∇u|2V2

}
dx

+

∫

SR

{
V ·n(|∇u|2 + k2u2

)
+ u2∂nH − 2∂nu (V ·∇u + Hu)

}
ds (3.7)

+

∫

WR

{
(Q∇u) ·∇u + u2

[
k2

(∇·V − 2H
)

+∇2H
]}

dx dy = α(R; u, V , H),

where

α(R; u, V , H) =

∫

CR

{
2∂nu (V ·∇u + Hu)− V ·n(|∇u|2 + k2u2

)− u2∂nH
}

ds

+ ν
[
u(−R, 0)

]2
V1(−R, 0)− ν

[
u(R, 0)

]2
V1(R, 0).

(3.8)

Asymptotics of the term α for large R is established in the following assertion.

Proposition 3.1. Let u be a solution to the problem (2.5)–(2.8) and let the functions Vi,

H and |∇H| have estimate O(R) as R →∞ uniform in θ, where Reiθ = x + iy. Then,

lim inf
R→∞

α(R; u, V , H) = 0. (3.9)

Proof. By the assumption on finiteness of energy we have
∫

W\WR

(|∇u|2 + ν2u2
)
dx dy =

∫ ∞

R

dρ

∫

Cρ

(|∇u|2 + ν2u2
)
ds < ∞.
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From the convergence of the integral over (R,∞) in the last formula it obviously follows

that there exists a sequence {Rn}, such that Rn →∞ as n →∞ and,

Rn

∫

CRn

(|∇u|2 + ν2u2
)
ds → 0 as n →∞. (3.10)

Further we consider the integral identity
∫

WRn

u∇2u dx dy = −
∫

WRn

|∇u|2 dx dy +

∫

FRn

u ∂yu dx−
∫

CRn∪SRn

u ∂nu ds,

which can be rewritten with the help of (2.6)–(2.8) as follows

∫

WRn

(|∇u|2 + k2u2
)
dx dy +

∫

CRn

u ∂nu ds = ν

∫

FRn

u2 dx. (3.11)

Using the Cauchy-Buniakowsky inequality and the formula (3.10) it can be shown that

the second integral in (3.11) tends to zero as n → ∞. Thus, from the condition (2.5) it

follows that
∫

FRn
u2 dx has a finite limit as n → ∞. Since

∫
FR

u2 dx is monotonic in R,

the function
∫

FR
u2 dx has the same limit as R →∞, so that

∫
F

u2 dx < ∞ and we write

∫

W\WR

(|∇u|2 + ν2u2
)
dx dy + ν

∫

F\FR

u2 dx

=

∫ ∞

R

dρ
{

ν
[
u(ρ, 0)

]2
+ ν

[
u(−ρ, 0)

]2
+

∫

Cρ

(|∇u|2 + ν2u2
)
ds

}
< ∞,

and convergence of the integral implies that

lim inf
ρ→∞

ρ
{

ν
[
u(ρ, 0)

]2
+ ν

[
u(−ρ, 0)

]2
+

∫

Cρ

(|∇u|2 + ν2u2
)
ds

}
= 0.

Under the assumption on behaviour of Vi, H and |∇H| at infinity, the latter formula

obviously substantiates the formula (3.9).

4 Non-existence of modes trapped by obstructions

with non-overlapping horizontal exterior cusps

We note that under the particular choice V = (−x, 0), H = −1/2, many of the terms in

the formula (3.7) disappear and we arrive at the identity (cf. (18.1) in [10]):

2

∫

WR

|∂xu|2 dx dy −
∫

SR

xnx

(|∇u|2 + k2u2
)
ds +

∫

SR

∂nu
(
2x∂xu + u

)
ds = α(R; u), (4.1)

where n = (nx, ny) and the function α is given in (3.8).
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In the section we shall assume that xnx 6 0 at all regular points of S. Consider first

the case when the contours do not contain cusp points. The first two integrals in (4.1)

are monotonic in R, the third integral vanishes in view of (2.8), and, thus, from (3.9) it

follows that limR→∞ α(R; u) = 0 and we arrive at
∫

S

xnx

(|∇u|2 + k2u2
)
ds = 2

∫

W

|∂xu|2 dx dy. (4.2)

Since xnx 6 0 on S, the identity (4.2) obviously leads to the conclusion that ∂xu ≡ 0 in

W and, then, in view of (2.5) we have u ≡ 0 in W . The condition xnx 6 0 can be satisfied

e.g. for deepening (not raising) of the depth profile and for a system of non-overlapping

bodies of semi-infinite extent (docks). The above assertion was proven in [10] and in

this section we shall derive its natural generalization for the case of exterior cusps with

horizontal one-side tangents.

In the case of contours with cusp points we cannot apply the identity (4.1) directly.

First we shall consider the identity for the domain W with small vicinities of cusp points

excluded and then shrink their size to zero. We denote by P+
i = (x+

i , y+
i ), i = 1, . . . , N+,

and P−
j = (x−j , y−j ), j = 1, . . . , N− the cusp points turning to the right and to the left

resp. The numeration of the points is e.g. as follows

x+
1 6 . . . 6 x+

N+
, x−1 6 . . . 6 x−N− .

We introduce discs of radius ε with centres at the cusp points

B±
i (ε) =

{
(x, y) :

∣∣x− x±i + i
(
y − y±i

)∣∣ 6 ε
}

, i = 1, . . . , N±,

and denote by W (ε) the fluid domain with ε-vicinities of the cusp points excluded and

by S(ε) the wetted surface of the bodies with ε-vicinities of the cusp points added

W (ε) = W \
⋃

±

⋃N±

i=1
B±

i (ε), S(ε) = ∂W (ε) \ F.

Following the arguments we used to obtain (4.2) from (4.1), we arrive at the identity

2

∫

W (ε)

|∂xu|2 dx dy −
∫

S(ε)

xnx

(|∇u|2 + k2u2
)
ds

+
∑
±

N±∑
i=1

∫

S±i (ε)

∂nu
(
2x ∂xu + u

)
ds = 0, (4.3)

where S±i (ε) = ∂B±
i (ε) ∩ W (see fig. 3). Further we shall make use of the asymptotic

representation (A.5) to compute asymptotics as ε → 0 of the integrals over contours

S±i (ε) in the latter formula. Omitting the index i for brevity we define the polar system

of coordinates with origin at the point P±
i

x = x± ∓ ρ± cos θ±, y = y± − ρ± sin θ±,
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Figure 3: Auxiliary geometrical notation

so that the values θ± = 0 and θ± = 2π correspond to the lower and the upper sides of the

cusp as ρ± → 0.

We use (A.1) and (A.5) and write

u(ρ±, θ±) = u(P±) + c±
[
ρ±

]1/2
cos(θ±/2) + O

([
ρ±

]3/2)
,

∂xu(ρ±, θ±) = ∓2−1c±
[
ρ±

]−1/2
cos(θ±/2) + O

([
ρ±

]1/2)
,

∂yu(ρ±, θ±) = −2−1c±
[
ρ±

]−1/2
sin(θ±/2) + O

([
ρ±

]1/2)
.

(4.4)

By (4.4) we have

∫

S±(ε)

∂nu
(
2x∂xu + u

)
ds −−→

ε→0
∓x± (c±)

2

2

∫ 2π

0

cos2 θ±

2
dθ± = ∓πx± (c±)

2

2
,

∫

S±(ε)

xnx

(|∇u|2 + k2u2
)
ds −−→

ε→0

x± (c±)
2

4

∫ 2π

0

cos θ± dθ± = 0.

(4.5)

Finally, combining (4.3), (4.5) and taking the limit ε → 0 we arrive at the following

generalization of Maz’ya’s identity involving coefficients of singularities of the velocity

field:

π

2

∑
±

N±∑
i=1

±x±i
(
c±i

)2
=

∫

W

|∂xu|2 dx dy −
∫

S

xnx

(|∇u|2 + k2u2
)
ds. (4.6)

We apply the equality (4.6) to prove the following assertion.

Theorem 4.1. Consider the problem (2.5)–(2.8) for a submerged obstruction with a piece-

wise smooth wetted surface S having a finite number of horizontal cusp points. Let for

any horizontal line γh = {y = h}, where h < 0 and γh ∩W 6= ∅, the set γh ∩W consist

of only one segment and all the intervals γh contain a common point. Then the problem

(2.5)–(2.8) for the geometry S has only the trivial solution.
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Proof. We fix the origin of coordinate system in such a way that the common point of the

intervals γh corresponds to y = 0. From the assumptions imposed it follows that xnx 6 0

at all regular points of the contour S, the latter was preposed in derivation of the identity

(4.6). Besides, under the assumptions of the assertion, we have ±x±i 6 0. Hence, from

(4.6) we find

2

∫

W

|∂xu|2 dx dy −
∫

S

xnx

(|∇u|2 + k2u2
)
ds 6 0. (4.7)

From the last inequality in view of (2.5) it obviously follows that u ≡ 0 in W .

Two important cases of the geometry, for which Theorem 4.1 yields non-existence of

trapped modes are the case of deepening of bottom (see e.g. fig. 1), when Theorem 4.1

generalizes results of Vainberg and Maz’ya [10], and the case when the submerged ob-

struction is a system of non-overlapping horizontal semi-infinite barriers. Consideration

of the problem for semi-infinite barriers can be found in [5] (see also references therein).

Let the potential u satisfy the following general form of the Helmholtz equation

∇2u + λu = 0 in W. (4.8)

For the problem with the equation (4.8) we can repeat literally the arguments of the

Sections 3 and 4 leading to the inequality (4.7) where the term k2 should be replaced

by −λ. Since the second integral in (4.7) vanishes if horizontal barriers are considered,

Theorem 4.1 for this geometry is valid for the problem consisting of the conditions (2.5),

(2.7), (2.8) and (4.8).

5 Application of the scheme for geometries with non-

horizontal cusps

In the present section we shall suggest applications of the scheme of the previous section for

the case of obstructions having non-horizontal cusps. For this purpose we use H = −1/2

and the vector field Vα(x, y) = (−x,−αy). With the vector field we should assume that

k = 0 in (2.6), so that the equation of fluid motion is Laplace’s one, which appears to

describe normal incidence of waves to a cylindrical obstruction. The assumption k = 0 is

needed to cancel the second term in the integrals over WR in the identity (3.7).

The vector field Vα is tangential to the field lines described (except the line x = 0) by

the equation
dy

dx
= α

y

x
,

which has the following family of solutions (where c is a parameter)

y(x) = c |x|α. (5.1)
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Figure 4: Bottom topography S with one inclined cusp point P0.

The parameter α must belong to the interval [0, 2], which follows from the condition of

the positivity of the matrix Q defined by (3.2).

Consider first the case shown in fig. 4, when the bottom topography S has one cusp

point P0 = (x0, y0) and the one-side tangent to S at the point forms an angle β with the

x-axis. Without a loss of generality we shall assume the cusp to be turned to the right.

We suppose that Vα · n > 0 at all regular points of S (we remind that it means that the

vector field nowhere enters the wetted surface of the obstruction). The latter implies that

one-side tangent to S at the cusp point should be tangential to one of the field lines as

shown in fig. 4. This is easily achieved by a shift of the origin in x, then x0 < 0 and by

(5.1) we have x0 tan β = αy0.

Since by assumption Vα ·n > 0, we can follow the scheme of the previous section and

write (cf. (4.3))

(2− α)

∫

W (ε)

|∂xu|2 dx dy + α

∫

W (ε)

|∂yu|2 dx dy

+

∫

S(ε)

Vα · n |∇u|2 ds +

∫

∂B(ε)

∂nu
(
u− 2 Vα · ∇u

)
ds = 0,

(5.2)

where B(ε) = {(x, y) : |x− x0 + i(y− y0)| 6 ε}, W (ε) = W \B(ε) and S(ε) = ∂W (ε) \F .

We introduce the polar coordinates (ρ, θ) with origin at P0 defined as follows

x = x0 − ρ cos(θ + β), y = y0 − ρ sin(θ + β),

so that the values θ = 0 and θ = 2π correspond to the lower and the upper sides of the

cusp as ρ → 0.

By (A.1) and (A.5) we have

u(ρ, θ) = u(P0) + c0ρ
1/2 cos(θ/2) + O

(
ρ3/2

)
,

∂xu(ρ, θ) = −2−1c0ρ
−1/2 cos(θ/2 + β) + O

(
ρ1/2

)
,

∂yu(ρ, θ) = −2−1c0ρ
−1/2 sin(θ/2 + β) + O

(
ρ1/2

)
.

(5.3)
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Using the asymptotics (5.3) we can find limit of the integrals over ∂B(ε) in the formula

(5.2) as ε → 0. We have
∫

∂B(ε)

∂nu
(
u− 2 Vα · ∇u

)
ds −−→

ε→0
−c2

0

2

{
x0

∫ 2π

0

cos
θ

2
cos

(θ

2
+ β

)
dθ

+ αy0

∫ 2π

0

cos
θ

2
sin

(θ

2
+ β

)
dθ

}
= −πc2

0

2

{
x0 cos β + αy0 sin β

}
,

∫

∂B(ε)

Vα · n |∇u|2 ds −−→
ε→0

−c2
0

4

[
x0

∫ 2π

0

cos(θ + β) dθ + αy0

∫ 2π

0

sin(θ + β) dθ

]
= 0.

(5.4)

Finally, combining (5.2), (5.4) and taking the limit ε → 0 we arrive at

πc2
0

2

{
x0 cos β + αy0 sin β

}
= (2− α)

∫

W

|∂xu|2 dx dy

+ α

∫

W

|∂yu|2 dx dy +

∫

S

Vα · n|∇u|2 ds. (5.5)

From (5.5) by the same scheme as in Theorem 4.1 we prove the following assertion.

Theorem 5.1. Let u be a solution to the problem (2.5)–(2.8), where k = 0 and the

geometry S is a depth profile containing one cusp point P0 turned upwards. Let the origin

of the coordinate system (x, y) be chosen in such a way that the vector Vα(P0) is colinear

to the one-side tangent to S at P0. If Vα · n > 0 at all regular point of S, then u ≡ 0.

The simplest example is the case α = 1, when the field lines (5.1) of Vα are straight

lines coming to the origin. Some of the lines are shown in fig. 4, where a geometry of

bottom is given, for which Theorem (5.1) guarantees non-existence of trapped modes for

all frequencies. An important particular application of the latter assertion with V1 is as

follows

Proposition 5.1. A flat barrier adjoint to a horizontal bottom, not piercing the free

surface and inclined at any angle cannot support trapped modes described by the problem

(2.5)–(2.8), where k = 0.

The field Vα and the above scheme can also be applied to establish absence of trapped

modes for bottom topographies with more than one cusp point turned upwards. As in § 4

we denote by P+
i = (x+

i , y+
i ), i = 1, . . . , N+, and P−

j = (x−j , y−j ), j = 1, . . . , N− the cusp

points turning to the right and to the left resp. Let β±i be the angle between the x-axis

and the one-side tangent to S at P±
i . Following the scheme we used to obtain (5.5), we

arrive at

π

2

∑
±

N±∑
i=1

{
x±i cos β±i + αy±i sin β±i

}
(c±i

)2
= (2− α)

∫

W

|∂xu|2 dx dy

+ α

∫

W

|∂yu|2 dx dy +

∫

S

Vα · n |∇u|2 ds, (5.6)
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P+ P−

W

S

x

y

Figure 5: Bottom topography S with two symmetric inclined cusp point P− and P+.

where c±i are coefficients in local asymptotics of the potential at points P±
i (see (4.4)).

It can easily be seen that the condition Vα · n > 0 at all regular point of S implies

that the cusps are turned to the y-axis, i.e. ±x±i 6 0 and x±i cos β±i 6 0. Thus, by (5.6)

we arrive at the following assertion.

Theorem 5.2. Consider a piecewise smooth depth profile S with a number of cusp points.

If Vα · n > 0 at all regular points of S, then the problem (2.5)–(2.8) with k = 0 has only

the trivial solution.

The latter assertion is illustrated in fig. 5, where a configuration with two cusp points

is shown along with lines of the vector fields V2 guaranteeing non-existence of trapped

modes for the geometry.

It is of note that unlike Theorem 4.1 for the case of one inclined cusp point, the latter

assertion imposes restriction on the cusps inclination and location for which a value of

the parameter α can be found to satisfy the condition Vα · n > 0. The latter is easily

seen in the simplest case of two symmetric cusp points. Consider a depth profile S with

two symmetric cusps P+ and P− such that P± = (±x0, y0), x0 < 0 and the angle between

the x-axis and the one-side tangent to S at P+ (P−) is equal to β (π − β) (as shown in

fig. 5). The condition Vα · n > 0 at all regular points of S implies that α = tan(β)x0/y0.

Then the condition α ∈ [0, 2] obviously yields the restriction β ∈ [0, arctan(2y0/x0)].

Conclusion

A boundary-value problem describing localized unforced harmonic motions of an ideal

unbounded fluid in presence of submerged obstacles and a bottom topography is consid-

ered in the case when the geometry has exterior cusps. A generalization of the Maz’ya

integral identity has been obtained including coefficients of singularities of the velocity

field. The identity has been used to prove non-existence of trapped modes for some classes

of geometries having exterior cusps.
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14 O.V. Motygin

Further work will endeavour to prove analogues of Theorems 4.1, 5.1 and 5.2 for three-

dimensional water wave problem. One of particular application of the scheme can be the

case of submerged obstructions having angular points with horizontal tangents. It is

supposed that non-existence of trapped modes can be established when any cross-section

of the fluid domain by the plane y = h, h < 0, is starlike with regard to the y-axis.

Acknowledgements. The support by Royal Society/NATO/FCO Chevening under a
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indebted to Dr. N.G. Kuznetsov for sharing his knowledge of Maz’ya’s identity. Thanks
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Appendix A. Asymptotics of potential near corners of

obstacles

In this appendix we shall derive asymptotics near a corner of a submerged obstacle for a

function u satisfying the Helmholtz equation (4.8) in the fluid domain W , the homoge-

neous Neumann condition (2.8) on the boundary of the obstacle S and the condition of

finiteness of energy u ∈ H1
loc(W ). We introduce a system of polar coordinates (ρ, θ) with

origin at the corner point. Let α be the angle between the one-side tangents in the corner

point, where α ∈ (0, 2π], measured through the fluid. Let the contour S be smooth at

distance ` from the corner and let χa,b(s) ∈ C∞(IR) be a cut-off function, which is equal

to one for s ∈ [0, a] and to zero for s > b. We define the potential

U(ρ, θ) = χa,b(ρ) u(ρ, θ), a < b < `. (A.1)

Since U ≡ 0 for ρ > b, further we shall consider the potential in the subset Ω of the fluid

domain, where Ω = W ∩ {(ρ, θ) : ρ < c}, b < c < `.

Taking into account (4.8) we find

∇2U = ρ2∂2
ρU + ρ ∂ρU + ∂2

θ U = ρ2
(
u ∂2

ρ
χ + 2 ∂ρu ∂ρ

χ + χ ∂2
ρu

)

+ ρ
(
u ∂ρ

χ + χ ∂ρu
)

+ χ ∂2
θ u = χ

(∇2u + λu
)

+ F = F,

where

F (ρ, θ; u) =ρ2
[
u(ρ, θ) ∂2

ρ
χ(ρ) + 2∂ρu(ρ, θ) ∂ρ

χ(ρ)
]

+ ρ u(ρ, θ) ∂ρ
χ(ρ)− λχ(ρ)u(ρ, θ).

(A.2)

Consider also the normal derivative of the potential U on the boundary of the domain Ω.

By (A.1) and (2.8) we find

∂nU = u ∂n
χ ≡ G . (A.3)
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Let us now suppose that the potential u is fixed so that F (x, y; u) = F (x, y) and

G(x, y; u) = G(x, y), then the potential U can be considered as a solution to the Neumann

problem for the Poisson equation in the domain Ω:

∇2U = F in Ω,

∂nU = G on ∂Ω.
(A.4)

We shall make use of the results by [16, ch. 2] and have to introduce here the functional

spaces used in this book. Let the space V l
γ(Ω) (l = 0, 1, . . . ; γ ∈ IR) consisting of functions

on Ω be defined as closure of C∞
0 (Ω \ 0) in the norm

∥∥u; V l
γ(Ω)

∥∥ =

(∫

Ω

l∑
i=0

l−i∑
j=0

ρ2(γ−l+i+j)|∂i
x∂

j
yu(x, y)|2 dx dy

) 1
2

and the spaces V
l−1/2
γ (∂Ω) (l = 1, 2, . . .) consists of traces on ∂Ω of functions from V l

γ(Ω)

with the norm defined by

∥∥u; V l−1/2
γ (∂Ω)

∥∥ = inf
{∥∥v; V l

γ(Ω)
∥∥ : v = u on ∂Ω \ 0

}
.

From the condition (2.5) and the definition (A.2) it obviously follows that F ∈ V l
γ(Ω)

for l = 1 and γ > 1. In its turn the function G is equal to zero in {(ρ, θ) ∈ Ω : ρ < a}.
Under the assumption on smoothness of the boundary u ∈ C∞(Ω \ 0) and, in view of

(A.3), G belongs to the space V
m+1/2
γ (∂Ω) for any m > 0, in particular, for m = l = 1,

which is preposed in Theorem 4.2 in [16, ch. 2]. In order to satisfy further conditions

of the theorem, where it is assumed that γ − l − 1 ∈ (0, πα−1), we choose γ = 2 + ε,

where ε is a small positive value. Then, the theorem guarantees existence of the unique

solution to (A.4), U ∈ V l+2
γ (Ω). Appealling to the definitions of the functions U and F we

find that F ∈ V 3
2+ε(Ω) and, obviously, F ∈ V 3

4+ε(Ω), so that we can apply Theorem 4.2

in [16, ch. 2] again. Repeating the procedure we find that U ∈ V 2n+1
2n−1+ε(Ω) for all integers

n > 0.

In order to satisfy the assumptions of Theorem 4.4 in [16, ch. 2] we shall consider U

as an element of a wider class, so that U, F ∈ V l
γ(Ω), where l = 2n+1, γ = 2n+ ε, ε > 0,

and the asymptotics of U as ρ → 0 is given by Theorem 4.4 in [16, ch. 2] as follows:

U(x, y) = χ(ρ)
{

c0 + c01 log ρ +
m∑

j=1

cjρ
jπ/α cos

(
jπθα−1

)}
+ w(x, y), (A.5)

where ci are constants, w ∈ V l+2
γ (Ω) = V 2n+3

2n+ε (Ω), n > 0 and the integer m is defined by

the condition of Theorem 4.4 in [16, ch. 2] that the value απ−1(l + 1− γ) should belong

to the interval (m, m + 1), so that m = 0, 1, 2, 3 for m/2 < απ−1 6 (m + 1)/2. From the

fact that w ∈ V 2n+3
2n+ε (Ω) it follows, in particular, that ∂i

x∂
j
yw = O(ρ2−i−j) as ρ → 0. We

note that c01 = 0 in view of the condition (2.5).
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