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A channel of infinite length and depth and of constant width contains inviscid
heavy fluid having free surface. The fluid is bounded internally by a submerged
cylinder which spans the channel and has its generators normal to the sidewalls.
The existence of trapped modes, i.e. states with finite energy corresponding to
localized fluid oscillations, is well established in the linearised theory of water waves
and the modes have been proven to occur at some frequencies for any geometry of
the submerged cylinder. The purpose of this work is to find lower bounds for these
trapped-mode frequencies. An integral identity suggested by Grimshaw (1974) is
applied to a possible trapped-mode potential and a comparison, or trial, function.
This identity yields uniqueness of the problem if the trial function has special
properties. A number of trial functions are suggested possessing these properties
for some sets of parameters of the problem. The potentials are constructed with
the help of singular solutions, namely modified Bessel functions and the Green’s
function of the problem. A comparison is given between the bounds obtained here
and known bounds and examples of trapped modes.

Keywords: uniqueness; trapped mode; eigenvalue bound; linear surface wave
theory; integral inequality; maximum principles; Green’s function

1. Introduction

In 1846 Stokes produced a simple solution to the linearised water wave equations
which is now called an edge wave and represents a wave travelling in the long-shore
direction over a uniformly sloping beach and decays in the direction of increasing
depth. It was not until over a century later that a further localized solution was
discovered by Ursell (1950), who proved the existence of modes which are sym-
metric about a vertical plane and are trapped near a totally submerged circular
cylinder in a channel of infinite depth. The proof, using multipole expansions and
infinite determinants, required the radius of the cylinder to be sufficiently small.
This restriction was removed by Jones (1953) who proved that trapped modes exist
for a wider class of submerged cylinders which are symmetric about the vertical
axis. Ursell (1987) has since given a simplified existence proof for trapped waves as
well as a number of comparison theorems. Detailed computations of the symmetric
trapped modes for circular cylinders of unrestricted radius were made by McIver &
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Evans (1985). They computed trapped-wave frequencies for the submerged circular
cylinder and found that more trapped waves appear as the cylinder approaches the
free surface.

McIver & Evans (1985) also derived lower bounds for frequencies of symmetric
modes trapped near a cylinder. These bounds are based on a comparison theorem
by Grimshaw (1974), which estimates trapped-mode frequencies for one domain
by the frequencies for another (associated) domain whose lower boundary is every-
where higher. Two types of associated domains were used in (McIver & Evans 1985):
plane beach and rectangular shelf. Another method to obtain lower bounds of the
frequency was suggested by Simon (1992) as an extension of the uniqueness theo-
rem by Simon & Ursell (1984). This scheme based on integral inequalities is more
flexible, in particular, the bound by McIver & Evans based on comparison with the
edge waves was rederived in (Simon 1992) to estimate the frequencies of all trapped
modes, not only the symmetric ones. However, only the bound mentioned above
was given in explicit form by Simon (1992), though it is very plausible that better
bounds can be found by the use of his method.

In this work in order to obtain bounds of the trapped-mode frequencies we shall
use an integral identity derived following Grimshaw (1974) and McIver & Linton
(1995). The method relies on finding a strictly positive trial function which satisfies
a certain field inequality within the fluid, a condition at infinity and boundary
inequalities on the free surface and cylinder’s contour. The integral identity relates
the trial potential to the possible trapped-mode potential in such a way that it may
be deduced that the latter must be identically equal to zero throughout the fluid.
A number of the trial functions are suggested, which satisfy the conditions for some
set of the parameters of the problem where, hence, the uniqueness is established.
The motivation of the approach comes from ideas on maximum principles and can
be found in Ch. 2 of (Protter & Weinberger 1984).

The plan of the paper is as follows. The problem is formulated in § 2 and the
integral identity, which relates the solution to the problem to a trial function, is
derived in § 3. The simplest singular trial functions based on the modified Bessel
functions are presented in § 4 and bounds are obtained with the help of these
functions. Green’s function of the problem is introduced in § 5 and some auxiliary
assertions on its properties are proven. The bounds using the Green function as
the trial one are given in § 6. A comparison of the bounds with known bounds
and examples of trapped modes is done in § 7, based on numerical results and
asymptotics.

2. Statement of the problem

A horizontal cylinder of arbitrary cross-section B and with parallel generators
is submerged in a deep-water channel of constant width. Cartesian coordinates
(x, y, z) are chosen with origin in the mean free surface, the z-axis is directed par-
allel to the length of the cylinder and the y-axis is directed vertically upwards. We
denote by W the cross-section of the domain occupied by fluid, F is the mean free
surface y = 0, S = ∂B and ~n is the normal coordinate on S directed into W . This
notation is illustrated in fig. 1.

Under the usual assumptions of linearised surface-wave theory, the fluid motion
can be described by a velocity potential Φ(x, y, z, t) where t is time. Solutions are
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Figure 1. A sketch of the geometrical notation

sought that describe oscillatory motions of radian frequency ω and wavenumber k
along the cylinder. The potential can be written as

Φ(x, y, z, t) = φ(x, y) sin kz cos ωt.

Here φ(x, y) satisfies

∇2φ− k2φ = 0 in W, (2.1)
∂φ

∂y
− νφ = 0 on F, (2.2)

∂φ

∂n
= 0 on S, (2.3)

where ν = ω2/g and g is the acceleration due to gravity.
We also have to complete the problem by a condition at infinity. We shall assume

that for some M > 0
|∇φ| = O(RM ), as R →∞ (2.4)

uniformly in ϑ, where x+iy = Reiϑ. This condition is used in the expansion theorem
(Ursell 1968, p. 815, see also Notes on the theorem on p. 822), which guarantees
that the potential φ decays exponentially at infinity when k > ν unlike the case
k < ν when there are wave terms in asymptotics of solution at infinity.

Further we shall only consider the case k > ν, when the fluid motion cannot
propagate energy to infinity and

φ(x, y) = O(|x + iy|−n) for any n > 0. (2.5)

The problem (2.1)–(2.4) was proven (Ursell 1950, Jones 1953, Ursell 1987) to
have a finite number of eigenvalues ν ∈ (0, k) for any geometry of the body B. The
aim of the present paper is to find lower bounds for the eigenvalues.

3. An integral identity

In this section we derive a modification of the integral identity suggested by Grim-
shaw (1974), who applied it to obtain bounds for the dispersion relation, which
connects frequency

√
νg and wavenumber k of the so-called edge waves in ocean

of finite depth. The scheme of the present section follows McIver & Linton (1995)
who used this integral identity in order to prove non-existence of trapped modes in
acoustic waveguides having bounded cross-section and containing bodies.

Author’s version. Published in Proc. Roy. Soc. London A, Vol.456, no. 2004, p. 2911–2930, 2000.
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Without loss of generality we can assume that φ(x, y) is a real-valued function
in the fluid domain W . Let another real-valued function w be defined in W and
strictly positive so that

w(x, y) > 0 in W. (3.1)

In view of the latter inequality the function

v = φ/w (3.2)

is defined in W . Also we consider the functional L, where

L(v, w, Π) =
∫

Π

∇ · [w2v∇v
]
dxdy, Π ⊂ W (3.3)

Expanding the integrand shows that

L(v, w, Π) =
∫

Π

[
w2v

(
∇2v +

2
w
∇v · ∇w

)
+ w2

(∇v
)2

]
dxdy.

From (3.2) it can be shown that

∇2v = w−1
(−2∇v · ∇w +∇2φ− v∇2w

)

and, thus, we obtain

L(v, w, Π) =
∫

Π

[
φ∇2φ− φ2

w
∇2w + w2

(∇v
)2

]
dxdy.

Since φ satisfies the modified Helmholtz equation (2.1), we have

L(v, w,Π) =
∫

Π

[
w2

(∇v
)2 − φ2

w

(
∇2w − k2w

)]
dxdy. (3.4)

From (3.3), using the divergence theorem, we find

L(v, w,Π) = −
∫

∂Π

w2v
∂v

∂n
ds,

where ∂/∂n indicates the normal derivative (~n is directed into the region Π). Sub-
stituting for v from (3.2) in the last formula and using (3.4) we arrive at

∫

ΠR

[
w2

(∇v
)2 − φ2

w

(
∇2w − k2w

)]
dxdy =

∫

∂ΠR

{
φ2

w

∂w

∂n
− φ

∂φ

∂n

}
ds.

where we fix Π = ΠR = W ∩ {|x + iy| 6 R}. The limit process R → ∞ can be
performed in the last equality if absolute value of the expression in curly brackets
on ∂ΠR has estimate O(R−1−δ), δ > 0, as R → ∞. In view of (2.5) this condition
is obviously satisfied if for some fixed n > 0

|∇w(x, y)|
w(x, y)

= O(Rn), as |x + iy| = R →∞. (3.5)
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Assuming that w satisfies (3.5) and taking the limit R →∞ leads to
∫

W

[
w2

(∇v
)2 − φ2

w

(
∇2w − k2w

)]
dxdy =

∫

F

φ2

w

{
νw − ∂w

∂y

}
dx +

∫

S

φ2

w

∂w

∂n
ds,

(3.6)
where we also make of use (2.2), (2.3) and the equality ∂/∂n = −∂/∂y on the free
surface.

Suppose that we can find a function w, which along with (3.1) and (3.5), also
satisfies

∇2w − k2w 6 0 in W, (3.7)
∂w

∂y
− νw > 0 on F, (3.8)

∂w

∂n
6 0, on S. (3.9)

Then, the left-hand side of (3.6) is non-negative and the right-hand side is non-
positive and we can conclude that both these expressions must vanish identically.
Thus, we find that (∇v)2 ≡ 0 throughout W , i.e. v is constant and

φ = Aw (3.10)

with some constant A. In the case when relationships (3.7), (3.8) and (3.9) are
equalities, the potential w is a positive trapped mode and (3.10) means that this
solution of the spectral problem is unique up to a constant multiplier.

Let, on the contrary, at least one of the expressions ∇2w− k2w, ∂w/∂y− νw or
∂w/∂n be non-zero at a point ζ belonging to Υ = W , F or S respectively. Then,
obviously this expression is also non-zero in some vicinity Υ0 ⊂ Υ of the point ζ
and at the same time the integral in (3.6), which contains this expression multiplied
by φ2/w, is equal to zero. Hence, in view of (3.1), φ = 0 in Υ0 which implies that
A = 0 in (3.10) and, hence, φ ≡ 0 in the domain occupied by fluid.

Remark 3.1. If a trial function w satisfies (3.1), (3.7)–(3.9) for some fixed ge-
ometry and values ν0, k0 of parameters ν, k, then the function also satisfies these
conditions for all ν and k such that ν 6 ν0 and k > k0, because in view of (3.1),

∇2w − k2w = ∇2w − k2
0w +

(
k2
0 − k2

)
w < 0 if k > k0,

∂w

∂y
− νw =

∂w

∂y
− ν0w +

(
ν0 − ν

)
w > 0 if ν < ν0.

Thus, if for some geometry and for some values k = k0, ν = ν0 the problem (2.1)–
(2.4) is proven with the help of (3.6) to have only the trivial solution, this is also
true for all values k ∈ (k0, +∞), ν ∈ (0, ν0).

We make of use the property described in the latter remark and prove the
following assertion.

Proposition 3.1. Let the parameter k be fixed and φn, n = 1, . . . , N be solutions
to the spectral problem (2.1)–(2.4) corresponding to the eigenvalues

0 < ν1 = ν2 = . . . = νj−1 < νj 6 . . . 6 νN ,

Author’s version. Published in Proc. Roy. Soc. London A, Vol.456, no. 2004, p. 2911–2930, 2000.
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where N > 1 by (Ursell 1950, Jones 1953, Ursell 1987). We also assume that φn

satisfy the condition (3.5). Then only the modes corresponding to ν1, . . . , νj−1 can
be strictly positive (negative) in the whole fluid domain W . If one of the modes φn,
n = 1, . . . , j − 1 is strictly positive (negative), then j = 2.

Proof. Assume, on the contrary, that for some ` > j, φ` is a strictly positive mode.
Then, by remark 3.1 the potential satisfies the condition (3.8) for ν = νm, m < `.
Since φ` also satisfies (3.7), (3.9) and the condition (3.5) by assumption, it can
be applied as a trial function w in (3.6) with φ = φm to prove that φm ≡ 0,
m < n, which contradicts the assumption. In the discussion of the formula (3.10)
we have found that a strictly positive trapped mode is unique, which completes the
proof.

Analogously, for a fixed value of ν we can consider a set of trapped modes φn

corresponding to the eigenvalues kn. Then the scheme of the latter proof leads
to the conclusion that only the trapped mode with maximum value of kn can be
strictly positive (negative) in the whole domain W and the mode is unique up to
an arbitrary factor.

4. Construction of the trial function w

In this section we construct examples of the trial function w using the modified
Bessel function Kn,

Kn(z) =
∫ ∞

0

e−z cosh µ cosh nµ dµ (4.1)

(see e.g. 8.432.1 in Gradsteyn & Ryzhik 1994). We introduce the polar system of
coordinates with origin in the point (0,−d) such that

x = r sin θ, y = −d + r cos θ. (4.2)

The potential K0(kr) in the above notation seems to be a good candidate for
the trial function w, because K0(kr) is strictly positive and satisfies the equation
(2.1). Besides, by 9.6.8 in (Abramowitz & Stegun 1965)

K0(kr) ∼ − log kr as r → 0

and so K0(kr) also satisfies (3.9) at least for sufficiently small circular cylinders,
having their centre at (0,−d).

In order to fulfil the condition (3.8), we consider the following potential

w0(x, y) = K0(kr) + C0 eky, (4.3)

where C0 = C0(k, ν, d) is a positive constant. We have to check that the potential
w0 satisfies (3.5). In view of 8.486.18 in (Gradsteyn & Ryzhik 1994) we have

|∇w0| 6 |∇K0(kr)|+ |∇C0 eky| = k K1(kr) + kC0 eky,

and, obviously,

|∇w0(x, y)|
w0(x, y)

6 k K1(kr)
K0(kr) + C0 eky

+
kC0 eky

K0(kr) + C0 eky
6 k

{
1 +

K1(kr)
K0(kr)

}
.

Author’s version. Published in Proc. Roy. Soc. London A, Vol.456, no. 2004, p. 2911–2930, 2000.
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Figure 2. Auxiliary geometrical notations

From the last inequality and the asymptotics of Bessel functions given by 9.7.2 in
(Abramowitz & Stegun 1965) it follows that

|∇w0(x, y)|/w0(x, y) = O(1) as |x + iy| → ∞.

The constant C0 in (4.3) is defined by the condition (3.8). We have for y = 0

∂w0

∂y
− νw0 = −k K1

(
k
√

x2 + d2
)
cos θ − ν K0

(
k
√

x2 + d2
)

+ (k − ν)C0.

Since the functions K0, K1 are monotonically decreasing, the condition (3.8) is
satisfied if

C0(k, ν, d) =
k K1(kd) + ν K0(kd)

k − ν
.

It is to note that this expression is positive only when k > ν.
Finally, uniqueness of the problem (2.1)–(2.4) for a body B, which contains the

point (0,−d) inside, will follow from the identity (3.6) with the trial potential w0

if this potential satisfies (3.9) on the contour S = ∂B. In the following remark we
shall show that it is possible to consider the condition for special geometries of
bodies instead of checking the condition for every particular contour in question.
We shall need the monotonicity principle of Theorem 5.1 in (Ursell 1987), which is
formulated in our notations as follows:
Suppose that S(1) lies inside S(2), and that the problem (2.1)–(2.4) for S(1) has
p eigenvalues such that 0 < ν

(1)
1 6 ν

(1)
2 6 . . . 6 ν

(1)
p < k. Then the eigenvalue

problem for S(2) has at least p eigenvalues, and ν
(1)
s > ν

(2)
s , s = 1, 2, . . . , p.

Remark 4.1. We introduce the family of contours S(a, d) = ∂B(a, d), defined as
S(a, d) = S0(a, d)∪S+

∞(a, d)∪S−∞(a, d), where S0(a, d) =
{
(r, θ) : r = a, |θ| 6 π/2

}
and S±∞(a, d) =

{
(x, y) : x = ±a, y 6 −d

}
(see fig. 2). Consider a body B′ ⊂ B(a, d)

and a trial potential w satisfying for fixed values ν0, k0 of parameters ν, k the
conditions (3.1), (3.5), (3.7), (3.8). Let also ∂w/∂n 6 0 on S(a, d) and on the
lower side of Bσ(a, d) = B(a, d)∩{y > −σ} for a sequence {σn}, such that σn →∞
as n →∞ and B′ ⊂ Bσn(a, d). We use the monotonicity principle for the domains
B′ and Bσn(a, d) tending n to infinity. Since the non-existence of trapped modes for
Bσn(a, d) follows from (3.6), we can make of use remark 3.1 and, thus, arrive at
the conclusion that under the above assumptions on w, trapped modes do not exist
for k > k0, ν 6 ν0 for any body of finite size lying inside the contour S(a, d).

Author’s version. Published in Proc. Roy. Soc. London A, Vol.456, no. 2004, p. 2911–2930, 2000.
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Consider the normal derivative of w0 on S(a, d). As the function K0(kr) decays
in r we find

±∂w0

∂x
< 0, x = ±a, y 6 −d.

On S0(a, d) we have

∂w0

∂r

∣∣∣
r=a

= −k K1(ka) + C0keky ∂y

∂r
6 −k K1(ka) + C0keky.

Thus, if F0(k, ν, a, d) > 0, where

F0(k, ν, a, d) = K1(ka)− C0(k, ν, d)ek(a−d),

then the potential w0 satisfies the condition ∂w0/∂n 6 0 on S(a, d). Thus, ap-
pealling to remark 4.1 and applying (3.6) with w0 we prove that the problem (2.1)–
(2.4) has only the trivial solution for frequencies and contours belonging to the set
Ω0 = Ω(F0), where

Ω(F) = {(k, ν, B) : B ⊂ B(a, d), (k, ν, a, d) ∈ ω(F)} , (4.4)
ω(F) = {(k, ν, a, d) : F(k, ν, a, d) > 0} . (4.5)

Further we shall construct more complicated potentials w and corresponding
functions F which will be proven to give wider than Ω0 sets of uniqueness.

We define
w1(x, y) = K0(kr) + K0(kr′) + C1(k, ν, d)eky,

where r is given by (4.2) and

x = r′ sin θ′, y = d− r′ cos θ′. (4.6)

By arguments analogous to those used for w0 we find

|∇w1| 6 k K1(kr) + k K1(kr′) + kC1 eky,

and using 9.7.2 in (Abramowitz & Stegun 1965), we have

|∇w1(x, y)|
w1(x, y)

6 k

{
1 +

K1(kr)
K0(kr)

+
K1(kr′)
K0(kr′)

}
= O(1) as |x + iy| → ∞.

The constant C1 is defined by the condition (3.8). Since for y = 0,

∂w1

∂y
− νw1 = −2ν K0

(
k
√

x2 + d2
)

+ (k − ν)C1(k, ν, d),

we fix
C1 = C1(k, ν, d) =

2ν

k − ν
K0(kd).

Consider the normal derivative of the potential w1 on S(a, d). Taking into ac-
count the monotonicity of K0 we have

±∂w1

∂x
< 0, x = ±a, y 6 −d.

Author’s version. Published in Proc. Roy. Soc. London A, Vol.456, no. 2004, p. 2911–2930, 2000.
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On the upper semicircle S0(a, d) we obtain

∂w1

∂r
= −k K1(ka) +

k(2d cos θ − a)
%(a, 2d, θ)

K1

(
k %(a, 2d, θ)

)
+ C1keky ∂y

∂r
. (4.7)

where
%(a, 2d, θ) =

√
a2 + (2d)2 − 4ad cos θ. (4.8)

It is easy to see that the maximum of the second term in the right-hand side of
(4.7) is achieved for θ = 0. Thus, ∂w1/∂n 6 0 on S(a, d) if

F1(k, ν, a, d) > 0,

where
F1(k, ν, a, d) = K1(ka)−K1

(
k(2d− a)

)− C1(k, ν, d)ek(a−d). (4.9)

Using the notation (4.4) we define the set Ω1 = Ω(F1). This set of parameters
k, ν and geometries B, for which the problem (2.1)–(2.4) has only the trivial so-
lution, is wider than the set Ω0. The inclusion Ω0 ⊂ Ω1 is a subsequence of the
following assertion.

Proposition 4.1. The inequality

F0(k, ν, a, d) 6 F1(k, ν, a, d)

holds for all values of k, ν, a and d, such that 0 < ν < k, 0 < a < d.

Proof. We use the representation of the Bessel functions Kn given by 8.432.8 in
(Gradsteyn & Ryzhik 1994):

Kn(kz) =
√

π

2z

kn e−kz

Γ(n + 1/2)

∫ ∞

0

e−kttn−
1
2

(
1 +

t

2z

)n− 1
2

dt

which is valid when | arg z| < π, Re n > − 1
2 , k > 0. For real n, n > 1

2 , we have

Kn

(
k(z1 + z2)

)
6 e−kz2

√
π

2z1

kn e−kz1

Γ(n + 1/2)

∫ ∞

0

e−kttn−
1
2

(
1 +

t

2z1

)n− 1
2

dt.

Thus, we establish the inequality

Kn

(
k(z1 + z2)

)
6 e−kz2 Kn(kz1), n > 1

2
.

Applying the last formula to the difference of functions F0 and F1 we get

F0(k, ν, a, d)−F1(k, ν, a, d)

= K1

(
k(2d− a)

)
+

2ν

k − ν
ek(a−d) K0(kd)− ek(a−d)

k − ν

{
k K1(kd) + ν K0(kd)

}

= K1

(
k(2d− a)

)− ek(a−d) K1(kd)− ν

k − ν
ek(a−d)

{
K1(kd)−K0(kd)

}
6 0,

where we also make of use the inequality Kn(z) > Km(z), for real z and n > m,
which is obvious in view of (4.1). The proof is complete.

Author’s version. Published in Proc. Roy. Soc. London A, Vol.456, no. 2004, p. 2911–2930, 2000.
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Consider the boundary of the set ω1 = ω(F1) (see (4.5)) given by the equation

F1(k, ν, a, d) = 0. (4.10)

The latter equation defines a single-valued function a∗ = a∗(k, ν, d) and the set ω1

is located under the surface so that

ω1 = {(k, ν, a, d) : 0 < ν < k, d > 0, 0 < a 6 a∗(k, ν, d)]}
which follows from the assertion.

Proposition 4.2. For any fixed k, ν and d, 0 < ν < k, d > 0, there exists only
one root a of the equation (4.10).

Proof. By (4.9) and 9.6.9 in (Abramowitz & Stegun 1965) we have

F1(k, ν, a, d) → +∞ as a → +0, F1(k, ν, d, d) = − 2ν

k − ν
K0(kd) < 0.

Besides, ∂ F1 /∂a < 0 in view of the representation

∂ F1

∂a
= −k

2

{
K0(ka) + K2(ka) + K0

(
k(2d− a)

)
+ K2

(
k(2d− a)

)

+
4ν ek(a−d)

k − ν
K0(kd)

}
,

which completes the proof.

In view of the proposition 4.2 it is reasonable to use the dependence of a on
other parameters for presentation of the surface defined by the equation (4.10).
Results of numerical computations of the dependence of a/d on k/ν for some fixed
values of νd are presented in fig. 3, 4 (dashed lines). The set of uniqueness is located
under the curves and marked by the letter ‘ω’.

Asymptotic behaviour of the solution of (4.10) can be investigated using well-
known asymptotics of the Bessel functions Kn. In particular, using the asymptotic
representation of Kn(z) as z →∞ given by 8.451.6 in (Gradsteyn & Ryzhik 1994)
one can find that a/d ∼ 1− νd/(dk)2 as k →∞.

5. Green’s function of the problem (2.1)–(2.4)

In order to construct another example of the potential w for the identity (3.6) we
shall use the Green function of the problem (2.1)–(2.4). The potential G(x, y,−d)
of a source located at the point (0,−d) must satisfy:

∇2
x,yG− k2G = −2πδ(x, y + d), y < 0,

∂G

∂y
− νG = 0, y = 0,

G → 0 as y → −∞,

where δ is the delta function. Using the representation of the Green function given
in (Ursell 1950) and the formula

K0(k
√

x2 + y2) =
∫ ∞

0

ey
√

t2+k2 cos xt dt√
t2 + k2

(5.1)
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(see 3.961.2 in Gradsteyn & Ryzhik 1994), we write

G(x, y,−d) = K0(kr) + K0(kr′) + 2ν

∫ ∞

0

e(y−d)
√

t2+k2 cos xt dt√
t2 + k2

(√
t2 + k2 − ν

) (5.2)

= K0(kr)−K0(kr′) + 2 I(x, y − d), (5.3)

where r and r′ are defined in (4.2) and (4.6) and

I(x, y) =
∫ ∞

0

ey
√

t2+k2 cos xt dt√
t2 + k2 − ν

(5.4)

The Green function satisfies the condition (3.7), (3.8) and in order to use G as
the trial function in the identity (3.6) we have to check positiveness of the function
and to consider behaviour of |∇G|/G as |x + iy| → ∞ and of the normal derivative
on S(a, d) (see (3.1), (3.5) and (3.9)). We start with proof of positiveness of the
Green function. We need the following auxiliary assertion.

Lemma 5.1. For all values of x, y, k and ν such that y 6 c < 0 and 0 < ν < k,
there holds the inequality I(x, y) > 0.

Proof. We start with noting that the function I defined by (5.4) is a holomorphic
function of complex ν in the disc |ν| < k and has a singularity on the boundary of
the circle at ν = k. We can write the expansion of I at the point ν = 0 when the
other parameters are fixed as

I(x,y,k)(ν) =
∞∑

n=0

cnνn, (5.5)

where

cn(x, y, k) =
1
n!

dn

dνn
I(x,y,k)(ν)

∣∣∣
ν=0

=
∫ ∞

0

ey
√

t2+k2 cosxt dt
(
t2 + k2

)n+1
2

. (5.6)

Using (5.1), we write
c0(x, y, k) = K0(k

√
x2 + y2).

This term is strictly positive (see (4.1)). Furthermore, it is easily seen that

c1(x, y, k) =
∫ y

−∞

∫ ∞

0

eξ
√

t2+k2 cosxt
(
t2 + k2

) 1
2

dt dξ =
∫ y

−∞
K0(k

√
x2 + ξ2) dξ > 0. (5.7)

In the same way we have

cn(x, y, k) =
∫ y

−∞
cn−1(x, ξ, k) dξ. (5.8)

Thus, by (5.7) and (5.8), cn > 0 for n = 0, 1, 2, . . . and since the radius of con-
vergence of (5.5) is equal to k, for all real ν, such that 0 < ν < k, we have
I(x,y,k)(ν) > 0. The proof is complete.
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Theorem 5.2. For any k, ν and d, such that 0 < ν < k, d > 0, the Green
function G(x, y,−d) of the problem (2.1)–(2.4) is strictly positive for all x, y, where
(x, y) 6= (0,−d), y 6 0.

Proof. In view of lemma 5.1 we should only note that by monotonicity of K0 the
sum of first two terms in (5.3) is strictly positive for y < 0 and equal to zero for
y = 0.

Theorem 5.3. For any k, ν and d, such that 0 < ν < k, d > 0, the x-derivative
of Green’s function Gx(x, y,−d) is negative (positive) for all x, y, where x > 0
(x < 0), y 6 0 and (x, y) 6= (0,−d).

Proof. Using (5.3) we write

Gx(x, y,−d) = −k K1(kr)
∂r

∂x
+ k K1(kr′)

∂r′

∂x
+ 2 Ix(x, y − d). (5.9)

Ix(x, y − d) =
∫ ∞

0

te(y−d)
√

t2+k2 sin xt√
t2 + k2 − ν

dt.

Let us consider the case x > 0. Negativeness of the sum of first two terms in (5.9)
is obvious in view of monotonicity of K1. Further, following the scheme applied in
lemma 5.1 we expand Ix in a series in ν, |ν| < k

Ix(x, y, k, ν) = −
∞∑

n=0

fnνn, fn =
∫ ∞

0

tey
√

t2+k2 sin xt

(t2 + k2)
n+1

2

dt. (5.10)

Since by formula 3.961.1 in (Gradsteyn & Ryzhik 1994),

f0 =
kx√

x2 + y2
K1(k

√
x2 + y2) > 0, x > 0,

the proof of lemma 5.1 can be repeated literally to result in the inequality

Ix(x, y − d) < 0, x > 0,

which completes the proof.

The Green function also satisfies the condition (3.5) which is established in the
following assertion.

Lemma 5.4. The estimate holds

|∇x,yG(x, y,−d)|
G(x, y,−d)

= O(1) as |x + iy| → ∞.

Proof. We start with noting that the third term in the right-hand side of (5.2)
is positive, since it has the following expansion in ν, |ν| < k (see the proof of
lemma 5.1):

∫ ∞

0

e(y−d)
√

t2+k2 cos xt dt√
t2 + k2

(√
t2 + k2 − ν

) =
∞∑

n=0

cn+1(x, y − d, k)νn,

Author’s version. Published in Proc. Roy. Soc. London A, Vol.456, no. 2004, p. 2911–2930, 2000.



On frequency bounds for modes trapped near a channel-spanning cylinder 13

where positive coefficients cn are defined by (5.6). Further, by (5.2) we have

Gy(x, y,−d) = −k K1(kr)
∂r

∂y
− k K1(kr′)

∂r′

∂y
+ 2ν I(x, y − d).

Then, using (5.2) and (5.3) and taking into account positiveness of the third term in
the right-hand side of (5.2) and of the sum of the first two terms in the right-hand
side of (5.3), we obtain

|Gy(x, y,−d)|
G(x, y,−d)

6 2ν + k

{
K1(kr)
K0(kr)

+
K1(kr′)
K0(kr′)

}
= O(1) as |x + iy| → ∞. (5.11)

Estimation of the term |Gx|/G is not so straightforward. We write the term Ix in
(5.9) in the form

Ix(x, y − d) =
ik2

2

∫ ∞

−∞

sinh µ cosh µ

k cosh µ− ν
exp{−kr′ cosh(µ− iθ′)}dµ, (5.12)

where r′ and θ′ are defined in (4.6). The change of variable in the latter formula
follows the consideration in (Ursell 1968, § 2). In the same way we have

I(x, y − d) =
k

2

∫ ∞

−∞

cosh µ

k cosh µ− ν
exp{−kr′ cosh(µ− iθ′)}dµ. (5.13)

The expressions under integral sign in (5.12) and (5.13) have simple poles in the
complex µ-plane, µ = ±i(τ + 2πn), where n = 0, 1, 2, . . . and τ = arccos(ν/k).

We consider the case x > 0 and define the function

I∗(x, y − d) =
2
k2

[
Ix(x, y − d) +

√
k2 − ν2 I(x, y − d)

]

=
∫ ∞

−∞
f(µ, k, ν) exp{−kr′ cosh(µ− iθ′)}dµ, (5.14)

where the function

f(µ, k, ν) =
i
(
sinhµ− sinh(iτ)

)
cosh µ

k coshµ− ν

is holomorphic in µ. Moving contour of integration in (5.14) we find

I∗(x, y − d) =
∫ ∞+iθ′

−∞+iθ′
f(µ, k, ν) exp{−kr′ cosh(µ− iθ′)}dµ

=
∫ ∞

−∞
f∗(µ, θ′, k, ν) exp{−kr′ cosh(µ)}dµ,

where f∗(µ, θ′, k, ν) = Re
{
f(µ + iθ′, k, ν)

}
and

f∗(µ, θ′, k, ν) =
α0 + α1 cosh(µ) + α2 cosh(2µ) + α3 cosh(3µ)

2ν2 + k2 cos(2 θ′)− 4kν cos(θ′) cosh(µ) + k2 cosh(2µ)
, (5.15)

α0 = kγ cos(2 θ′), α1 = −2νγ cos(θ′)− k sin(3 θ′)/2,

α2 = kγ + ν sin(2 θ′), α3 = −k sin(θ′)/2, γ =
√

1− ν2/k2.
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The numerator in the right-hand side of the formula (5.15) is obviously greater
than k (k − 4ν cos(θ′)) cosh(2µ), and it is easily seen that if θ′∗ is large enough, for
θ′ ∈ [θ′∗, π/2] the numerator can be estimated from below by a strictly positive
constant. Then, by (5.15) we have for some constant C = C(k, ν, θ′∗)

|f∗(µ, θ, k, ν)| 6 C cosh(µ), for θ′ ∈ [θ′∗, π/2], µ ∈ (−∞, +∞),

and by using (4.1) we arrive at

| I∗ | 6 C K1(kr′), θ′ ∈ [θ′∗, π/2]. (5.16)

We consider the subdomain of W , Wb = {(x, y) ∈ W : x > 0, |x + iy| > b}. Let
∂Wb = Fb∪γb∪Vb, where Fb is the part of free surface x > b, γb is the quarter-circle
|x + iy| = b, x > 0, y 6 0 and Vb is the part of the y-axis, y < −b. Let b be large
enough so that θ′ > θ′∗ for all points of Fb (θ′ is given in (4.6)). We define

g(x, y; c) = cG(x, y,−d) + Gx(x, y,−d), (x, y) ∈ Wb.

Since the function G(x, y,−d) is strictly positive for (x, y) ∈ ∂Wb and the function
Gx(x, y,−d) is equal to zero on Vb, a majorant c G with some constant c can be
found for −Gx = |Gx| on γb ∪ Vb. Further, since (5.16) holds on Fb, by (5.3), (5.9)
and (5.14) the expression |Gx(x, y,−d)+

√
k2 − ν2G(x, y,−d)| can be majorized on

Fb by c1 K1(kr) + c2 K1(kr′) with some constants c1 and c2. Thus, from (5.2) and
asymptotics of K0, K1 at infinity it follows that a value of the parameter c > 0 can be
found such that g(x, y, c) > 0 when (x, y) ∈ ∂Wb. At the same time, from Theorem 6
in (Protter & Weinberger 1984, ch. 2), it follows that the function g(x, y) can not
attain non-positive minimum at an interior point of Wb. It means that g(x, y) > 0
in Wb and in view of Theorems 5.2 and 5.3 we have |Gx(x, y,−d)|/G(x, y,−d) < c.
Combining this inequality with (5.11) completes the proof.

6. Eigenvalue bounds using the Green function

We define the potential
wG(x, y) = G(x, y,−d).

From the above it follows that this potential satisfies (3.5), (3.7) and (3.8), and
we have to consider the normal derivative of the potential on the contour S(a, d)
(see fig. 2). First we note that from Theorem 5.3 it follows that ∂wG/∂x < 0 for
x = a, y 6 −d. Thus, we only have to check the condition (3.9) for wG on the upper
semicircle S0(a, d). Using (5.2) we write (cf. (4.7))

∂wG

∂r

∣∣∣
r=a

= −k K1(ka) +
k(2d cos θ − a)

%(a, 2d, θ)
K1

(
k %(a, d, θ)

)− 2ν H(x, y − d) sin θ

+ 2ν I(x, y − d) cos θ,

where %(a, d, θ) is defined in (4.8) and

H(x, y) =
∫ ∞

0

tey
√

t2+k2 sin xt√
t2 + k2

(√
t2 + k2 − ν

) dt.
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Figure 3. The dependence of a/d on k/ν given by (6.3) (—) and by (4.10) (- - -) for fixed
values of νd = 0.4, 1.2 and 2 (counting from below).

It is easily seen that H(x, y) > 0 for x > 0, y < 0, because this function can be
expanded in ν, |ν| < k (see lemma 5.1) H(x,y,k)(ν) =

∑∞
n=0 fn+1ν

n, where the
coefficients fn are given by (5.10) and fn > 0.

We define

I0(k, ν, y) =
∫ ∞

0

ey
√

t2+k2 dt√
t2 + k2 − ν

. (6.1)

Since for any k, ν, such that 0 < ν < k, I(x, y) 6 I0(k, ν, y) and since I0(k, ν, y) is
an increasing function of y, we finally arrive at the inequality

∂wG

∂r

∣∣∣
r=a

6 −kFG(k, ν, a, d),

where

FG(k, ν, a, d) = K1(ka)−K1

(
k(2d− a)

)− 2k−1ν I0(k, ν, a− 2d). (6.2)

Hence, using the notation (4.4) we can define the set ΩG = Ω(FG) of parame-
ters k, ν and geometries B, for which the problem (2.1)–(2.4) has only the trivial
solution. It can be proved that the set ΩG contains the set Ω1. This inclusion is a
subsequence of the following assertion.

Proposition 6.1. The inequality

F1(k, ν, a, d) 6 FG(k, ν, a, d)

holds for all values of k, ν, a and d such that 0 < ν < k, 0 < a < d.

Proof. Using (4.9) and (6.2) we write

∆ =
1
2ν

[
FG(k, ν, a, d)−F1(k, ν, a, d)

]
=

ek(a−d)

k − ν
K0(kd)− 1

k
I0(k, ν, a− 2d).
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Figure 4. The dependence of a/d on k/ν given by (6.3) (—) and by (4.10) (- - -) for fixed
values of νd = 0.01, 0.03 and 0.07 (counting from above).

By 8.432.9 in (Gradsteyn & Ryzhik 1994) we rewrite ∆ as follows

∆ =
ek(a−d)

k − ν

∫ ∞

0

e−d
√

t2+k2

√
t2 + k2

dt− 1
k

∫ ∞

0

e(a−2d)
√

t2+k2

√
t2 + k2 − ν

dt.

Then, we have

∆ > ek(a−d)

∫ ∞

0

{
1

(k − ν)
√

t2 + k2
− 1

k
(√

t2 + k2 − ν
)
}

e−d
√

t2+k2
dt.

The term in curly brackets is equal to

ν
(√

t2 + k2 − k
)

k(k − ν)
√

t2 + k2
(√

t2 + k2 − ν
)

Under the assumption imposed the latter expression is obviously positive, which
completes the proof.

Results of numerical computations for the equation

FG(k, ν, a, d) = 0 (6.3)

are presented in fig. 3, 4 and 5 (solid lines), where the domain of uniqueness is
marked by the letter ‘ω’.

7. Correlation of the eigenvalue bounds with known bounds
and examples of trapped modes

In this section we shall compare the bounds for the uniqueness set given by (6.3)
with known bounds derived in (McIver & Evans 1985, Simon 1992) and examples
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Figure 5. The dependence of a/d on νd given by (6.3) (—) and by (7.1) (–·–) for fixed
values of k/ν = 1.1, 1.2, 1.4 and 1.8 (counting from below).

of trapped modes for a submerged cylinder constructed in the papers (Ursell 1950,
McIver 1991, Porter & Evans 1998).

First we address to the results by Simon (1992). Consider an edge, formed by
two lines: L and its reflection in the y-axis L′, which emanate from the origin and
go to infinite depth not intersecting a contour S. Let β = β(y) be the angle that L
and L′ make with the downward vertical. In (Simon 1992) the eigenvalue bounds
for the geometry S were given in the form

k

ν
> m2 + 1

2m
+ k

∫ ∞

0

e2kmy tan2 β(y) dy,

where m is an arbitrary positive value. It seems that quite good eigenvalue bounds
can be obtained using the latter formulation and, since the edge can include the
shape S(a, d) and not vice versa, the bounds by Simon (1992) are valid for a more
general class of obstacles than the bounds obtained in the present paper. However,
the question of optimal choice of the contour L and the value of m was not discussed
at length by Simon (1992) and explicit formula for bounds was given only for the
case when L is a straight line. For the geometry B(a, d) introduced in fig. 2 the
uniqueness takes place when

a/d 6
√

1− ν2/k2. (7.1)

The bound (7.1) was earlier derived by McIver & Evans (1985) for symmetric modes
trapped near a circular cylinder. Comparison of the bounds given by (6.3) and the
bounds (7.1) is shown in fig. 5. It is to note that the bounds (7.1) turn out to be
better in some range of parameters of the problem.

Further we compare the bounds delivered by (6.3) with known examples of
trapped modes. As was shown numerically by McIver & Evans (1985), more than
one trapped mode for a fixed cylinder can appear and the number of modes increases
as the depth of submergence is decreased. For the trapped mode, which is symmetric
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Figure 6. Curves showing the dispersion relation for symmetric (—) and antisymmetric
(---) modes constructed by Porter & Evans (1998) and the solution of the equation (6.3)
(lower curve) when d/a = 1.1.

in x and has smallest value of the ratio k/ν, asymptotics of the dispersion relation
near the cut-off (as k/ν → 1+0) was obtained in (Ursell 1950) for a circular cylinder
and in (McIver 1991) for a cylinder having symmetric in x but otherwise arbitrary
geometry. According to (Ursell 1950), the asymptotics of the mode is as follows

νa ∼ (3π)−
1
2 eνd

(
k2/ν2 − 1

) 1
4 as k/ν → 1 + 0, (7.2)

where the same notation for the radius a and the submergence d of circular cylin-
der’s centre is used. At the same time, asymptotics of the solution to (6.3) near
the cut-off can be obtained with the help of the representation (A.3) derived in
Appendix A. We write (6.3) in the form

K1(ka) = K1

(
k(2d− a)

)
+ 2k−1ν I0(k, ν, a− 2d). (7.3)

In view of (A.3) the right-hand side of the last equality has estimate

2π eν(a−2d)
(
k2/ν2 − 1

)− 1
2 + φ(k, ν, a, d) as k/ν → 1 + 0,

where φ = O(1) uniformly in a when d > 0. Thus, by using the asymptotics 9.6.9
in (Abramowitz & Stegun 1965) for the left-hand side of (7.3), we arrive at

νa ∼ (2π)−1 e2νd
(
k2/ν2 − 1

) 1
2 as k/ν → 1 + 0.

Obviously, the latter asymptotics of the bound given by (6.3) is consistent with the
asymptotics (7.2) of the dispersion relation, but it is not sharp. However, it is to be
taken into account that the formula (7.2) is established only for the lower in k/ν
and symmetric in x trapped mode and the equation (6.3) delivers bounds for all
modes.

Shown in fig. 6 are the bounds given by (6.3) and the symmetric and antisym-
metric trapped modes for submerged circular cylinder of radius a and with centre
at (0,−d) obtained numerically in (Porter & Evans 1998). The uniqueness set is
marked by the letter ‘ω’.
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On frequency bounds for modes trapped near a channel-spanning cylinder 19

8. Conclusion

In this work we consider the linearised water-wave problem describing motion of
fluid in presence of a cylindrical body spanning a channel of infinity depth and
length and of finite width. Existence of surface waves trapped near the cylinder is
well-established in (Ursell 1950, Jones 1953, Ursell 1987). In this work a method,
which relies on integral identity by Grimshaw (1974), has been suggested which
yields simple bounds for the frequency of the trapped-mode solutions. Comparison
with known bounds and examples of trapped modes has been given.

The author would like to thank Drs P. McIver and M. McIver for many helpful discus-
sions during the preparation of this article. The support by Royal Society/NATO/FCO
Chevening under a Postdoctoral Fellowship Award grant is gratefully acknowledged.

Appendix A

In this section we consider the function I0(k, ν, y) defined in (6.1). We write

I0(k, ν, y) =
1
2

∫ +∞

−∞
s(k, ν, y, t) dt, s(k, ν, y, t) =

ey
√

t2+k2

√
t2 + k2 − ν

.

We treat s(k, ν, t) as a single-valued holomorphic function of t = t1 + i t2 in
C \ {(t1, t2) : t1 = 0, |t2| > k} and integrate s(k, ν, y, t) over the contour CR shown
in fig. 7. As R →∞, we obtain

2 I0(k, ν, y) = −2πi Res
t=−i

√
k2−ν2 s(k, ν, y, t) +

∫

γ−
s(k, ν, y, t) dt. (A.1)

The contour γ− consists of two sides the lower branch-cut, where the expression√
t2 + k2 has different signs. We have

Rest=−i
√

k2−ν2 s(k, ν, y, t) =
iν eνy

√
k2 − ν2

. (A.2)

Changing variable t for iµ in
∫

γ−
s(k, ν, y, t) dt, we arrive at

∫

γ−
s(k, ν, y, t) dt = 2

∫ ∞

k

√
µ2 − k2 cos

(
y
√

µ2 − k2
)

+ ν sin
(
y
√

µ2 − k2
)

µ2 − k2 + ν2
dµ.

-

6
t = t1 + i t2t2

t1

−(k2 − ν2)
1
2

−k.........

.........................................................................................................................................................................................................................................................................................................

.........................................................................................................................................................................................................................................................................................................
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Figure 7. Contour of integration
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Combining the latter formula with (A.1), (A.2) and the formula 3.754.2 in (Gradsteyn
& Ryzhik 1994), after some simple algebra we find

I0(k, ν, y) =
πν eνy

√
k2 − ν2

+ K0(−ky) + ν

∫ ∞

0

z sin(yz)− ν cos(yz)
(z2 + ν2)

√
z2 + k2

dz. (A.3)
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