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We study an eigenvalue problem with a spectral parameter in a boundary condition.
This problem for the two-dimensional Laplace equation is relevant to sloshing fre-
quencies that describe free oscillations of an inviscid, incompressible, heavy fluid in
a canal having uniform cross-section and bounded from above by a horizontal free
surface. It is demonstrated that there exist domains such that at least one of the
eigenfunctions has a nodal line or lines with both ends on the free surface (earlier,
Kuttler (1984) tried to prove that there are no such nodal lines for all domains, but
his proof is erroneous). It is also shown that the fundamental eigenvalue is simple
and for the corresponding eigenfunction the behaviour of the nodal line is charac-
terized. For this purpose, a new variational principle is proposed for an equivalent
statement of the sloshing problem in terms of the conjugate stream function.
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1. Introduction

The present paper deals with a boundary value problem for the Laplace equation
when there is a spectral parameter in a boundary condition. This problem, usually
referred to as the sloshing problem, describes natural frequencies and the corre-
sponding modes of the free wave motion. Mainly we are concerned with waves in
an infinitely long canal having a uniform cross-section, but waves in a bounded
container will also be discussed.

An inviscid, incompressible, heavy fluid (water) occupies a canal bounded from
above by a free surface of finite width. The surface tension is neglected and we
assume the water motion to be irrotational and of small-amplitude. The latter
assumption allows us to linearize boundary conditions on the free surface which
leads to the following statement of the problem in the case of the two-dimensional
motion in planes normal to the generators of the canal bottom. Let rectangular
Cartesian coordinates (x,y) be taken in the plane of the motion with the origin
and the z-axis in the mean free surface, whereas the y-axis is directed upwards.
With a time-harmonic factor removed, the velocity potential u(z,y) for the flow
must satisfy the boundary value problem:

Ugy + Uyy =0 in W,
uy =vu on F,

Ou/On =0 on B.
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Here the cross-section W of the canal is a bounded simply connected domain whose
piecewise smooth boundary OW has no cusps. One of the open arcs forming OW is
an interval F of the z-axis (the free surface of water), and the bottom B = oW \ F'
is the union of open arcs, lying in the half-plane y < 0, complemented by corner
points (if there are any) connecting these arcs. We suppose that the orthogonality

condition
/ udr =0 (1.4)
F

holds, thus excluding the zero eigenvalue of (1.1)—(1.3), in which case the spec-
tral parameter v is equal to w?/g, where w is the radian frequency of the water
oscillations and g is the acceleration due to gravity.

The sloshing problem has been the subject of a great number of studies over
more than two centuries (a historical review was given by Fox & Kuttler (1983)).
It has been well-known since the 1950s that problem (1.1)-(1.4) has a discrete
spectrum; that is, there exists a sequence of eigenvalues

0<V1<V2<"'<Vn<---a (15)

each having a finite multiplicity equal to the number of repetitions in (1.5), and such
that v, — oo as n — oo. (Some authors, in particular Kuttler (1984), count the
sloshing eigenvalues in a different way starting with the zero eigenvalue as the first
one.) The corresponding eigenfunctions {u,}3° C H'(W) form a complete system
in an appropriate Hilbert space. These results can be found in many sources the
most recent of which is the book by Kopachevsky & Krein (2001).

The behaviour of nodal lines is a classical topic of the spectral theory for bound-
ary value problems that goes back to works of Courant & Hilbert! (1953). However,
there is only one note by Kuttler (1984) concerning nodal lines of problem (1.1)—
(1.4). The approach of Kuttler! (1984) is based on the following key lemma.

Nodal lines of an eigenfunction of problem (1.1)—(1.4) have one end on the free
surface and the other one on the bottom.

Examining the proof of this lemma shows that there is a gap in Kuttler’s reasoning
that depends on a contradiction to which he tries to come in the following way.
He constructs a monharmonic function ® that is a linear combination of certain
functions ¢; that are admissible for the Rayleigh quotient of the sloshing problem:

fW (u2 + uz) dxdy
fF u? dx )

Noting that ® satisfies the boundary condition (1.2), he claims without proof that
® minimises the above quotient, and so is harmonic which leads to a contradiction.
However, since ® is a linear combination of ¢;, it has a discontinuous gradient
on a set of curves which obstructs the fact that the Rayleigh quotient achieves a
minimum for ® because the argument based on Green’s theorem and applicable to
a single ¢; does not holds for ®.

Our attempt to fill in the gap resulted in constructing an example of sloshing
eigenfunction that has a nodal line with both ends on the free surface (see The-
orem 2.6/ in Section 2). The construction involves the same velocity potentials in
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IR? with singularities on IR% which earlier were used for demonstrating the exis-
tence of point eigenvalues embedded in the continuous spectrum of the water-wave
problem.

Since all results formulated by Kuttler/ (1984) are proved by using the above
fallacious lemma, it is necessary to check whether they are true. It occurs that one
of the main results of Kuttler (1984), the simplicity of the fundamental eigenvalue,
is valid; this is demonstrated in Theorem [3.1/ (Section 3) by means of a new varia-
tional principle for an equivalent spectral problem in which stream function appears
instead of the velocity potential. The denominator of the corresponding Rayleigh
quotient involves a nonlocal operator, whereas the Dirichlet integral stands in the
numerator. In Theorem 3.1, we also prove that the fundamental eigenfunction has
only one nodal line connecting F' and B. This nodal line cannot re-enter F at the
endpoints when W lies within the vertical semistrip bounded by F from above (this
condition is usually referred to as John’s condition). However, such a behaviour of
this nodal line is an open question for domains of general geometry with connected
F'. In Section 4 we discuss other open questions such as the simplicity of all eigen-
values and give some numerical results illustrating the plethora of patterns of nodal
lines.

2. Nodal lines and domains of the velocity potential

In this section, we construct an example of the sloshing problem, possessing an
eigenfunction that has only one nodal line whose both ends are on F' (Subsec-
tion 2.1), and consider some simple properties of nodal domains.

(a) Ezample

Our example involves a particular pair velocity potential /stream function intro-
duced in (Kuznetsov et al., 2002, Subsection 4.1.1). The simplest example of this
kind was proposed by Mclver! (1996), but for our purpose we need another one that
has more nodal lines. Here we investigate nodal lines of v and v simultaneously
in order to obtain the required example, whereas Kuznetsov et al. (2002) studied
properties of the level lines only for v .

For v = 3/2 we consider the following two functions:

w(z,y) = / cos k(x — 72, + cosk(x + m) o k. 2.1)
0 — VUV
* sin k(x — ink
v(z,y) = /O sin k(@ ”ﬁ:ﬂ @) gy gy, (2.2)

where both numerators vanish at k¥ = v = 3/2, and so the integrals are the usual
infinite integrals. It is easy to verify that u and v are conjugate harmonic functions
in IR* such that

w(=z,y) = u(z,y) and v(-z,y) = —v(z,y).

Moreover, u and v are infinitely smooth up to OIR* \ {z = 4+, y = 0} and well-
known facts from the theory of distributions imply that [u, — vu], _ is equal to a
linear combination of Dirac’s measures at * = m and x = —m. Therefore,

u, =vu on dR? \ {r =+, y = 0}. (2.3)
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1 2 3 4 5 6 7

Figure 1. Nodal lines of u (solid lines) and v (dashed line) given by (2.1) and (2.2),
respectively, with v = 3/2.

The calculated nodal lines of v and v are shown in Fig. [i] and we proceed with
proving that the location of the lines is as plotted. It is clear that the negative
y-axis is a nodal line of v and another nodal line is considered in the following

Proposition 2.1. Apart from {x = 0,y < 0}, there is only one nodal line of
v(z,y) in IR? , which is smooth, symmetric about the y-axis, and has both ends on
the x-azis so that the right one, say (xo,0), lies between the origin and the point

(7,0).

The latter nodal line serves as the bottom B in our example; the right half of
this line is shown by dashed line in Fig. I, where the bullet marks the position
of (m,0) and the solid lines are nodal lines of w. Since (2.3) holds for u and the
Cauchy—Riemann equations yield that (i.3) is fulfilled on the so defined bottom B,
we see that u satisfies the sloshing problem in the domain W between this B and
the z-axis. Moreover, Fig. (i shows that there is only one nodal line of u in this
water domain W and this property will be proved in Theorem 2:6] below.

Our proof of Proposition 2.1 is based on the next lemma illustrated in Fig. i
(see the top part, where u(z,0) (solid line) and v(x,0) (dashed line) are plotted).

Lemma 2.2. Function v(z,0) has the following properties on the half-azxis x > 0 :
(i) v(z,0) is continuous on [0, 7] and on [7,+00), but

v(w,O)—>Si(3w)+g$g as © — 7+ 0; (2.4)
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(ii) there are exactly two zeroes of v(x,0) on [0,7), at x =0 and at some point
xo € (27/3,7);

(iii) v(z,0) < 0 for x € (0,x0) and there is only one point x,, € (0,x¢), where
v(x,0) attains minimum;

(iv) v(z,0) > 0 for x > xo;

(v) v(z,0) is a monotonically decreasing convex function for x > 7 and it tends
to zero as x — +00.

Here and below, Si and Ci are the sine and cosine integrals, respectively, defined

by
X _: o]
Si(X):/ Slzkdk and Ci(X):—/ Coljkdk.
0 X

Proof. Formula 3.722.5 in Gradshteyn & Ryzhikl (1980) allows us to write

v(z,0) = cosvz [Ci(v|x — 7|) — Ci(v(z + 7))]
+sinvz [Si(v(x — 7)) = Si(v(z +7))] —7H(m — ) sinve, (2.5)

where the equality v = 3/2 is taken into account and H (p) denotes the Heaviside
function. The sum of first two terms here is a continuous function because the
logarithmic singularity in Ci(v|x — 7|) at = 7 is suppressed by the first-order
zero of cosvzx at this point. Hence, we get (2.4), which completes the proof of (i).

Since v is an odd function of z, v(0,0) = 0. Combining (2.5) with formula
3.354.1 in |Gradshteyn & Ryzhik/ (1980), we obtain

dk

,0 _ [ —|z—m|kv _ _($+7")ij| -
v(x,0) /0 e sgn(z—7)+e e

—7mH(m—x)sinve. (2.6)
The derivative of the last integral with respect to x is equal to

> kdk
—I//O |:e—(7r—x)kn/ + e—(7r+:v)k:l/j| m <0 forzxe (0, ’/T).

Therefore, for z € (0,7) the integral is a non-positive concave function, which
decreases strictly monotonically and has absolute value smaller than /2. These
facts prove (ii), (iii), and (iv) for x € (xo,n). For z > m, (iv) is an immediate
consequence of (2.6). The formula

o kdk
vz (2,0) = —1//0 {e_(x_”)k” + e_(x’L”)k”} 112 <0 forz>m

proves the last assertion (v) of lemma. O

Proof of Proposition 2.1. The following properties of the nodal lines of harmonic
functions are well-known (see, for example, Kuznetsov et al., 2002, Subsection 4.1.1),
and so we give only a list of these properties here. There exists a nodal line ¢, em-
anating into IR? from the zero (z0,0) of v(z,0); ¢, cannot terminate in R? and
re-enter the x-axis at (xg,0). Hence, if we exclude any part of the negative y-axis
as a continuation of ¢, (such a continuation will give a non-smooth nodal line),
then there are the following three possibilities for ¢,: (a) it goes to infinity; (b) it
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re-enters the z-axis at the origin; (c) it re-enters the z-axis at (—xz, 0). Let us show
that (a) and (b) are impossible.

For this purpose we consider another representation for v(zx,y). From (2.2) we
have

vy — VU = / [sin k(7 — z) — sin k(7 + x)] " dk
0

T—x T+ 2z(m? — 22 — y?)

TP+ -2 PR PrE-)y+ @+

The solution of this differential equation is

o 0 k2 — (72 — 2?) e
v(w,y) =e [v(w,O) + Qx/y [ s iy e e dk|.  (2.7)

Taking into account (2.6), this formula shows that x='v(x,y) has the same nodal
lines as v(z,y) with exception of the negative y-axis. Since the limit of = v(x,0)
as x — 0 is negative (see the proof of Lemma 2.2)) and the integral in (2.7) vanishes
for y = 0, (b) is impossible.

It immediately follows from (2.7) and Lemma 2.2, (v), that

v(z,y) >0 when x > 7 and y <O0. (2.8)

For all > 0 the integral in (2.7) tends to +oo like e /(vy?) as y — —oo, and so
there exists yg < 0 independent of x such that

z 7 w(z,y) >0 when z >0 and y < yo.
This fact together with (2.8) shows that (a) is impossible.
Finally, the integral in (2.7) with £ = 0 has the following behaviour as the
function of y < 0. It is equal to zero at y = 0, has only one negative minimum at

y = —m, and tends to +00 as y — —oo, which was demonstrated above. Therefore,
the nodal line ¢,, crosses the negative y-axis, thus realising (c). The proof is complete.
O

For analysing the nodal lines of u(z,y) given by (2.1), we begin with investigat-
ing the behaviour of u(x,0) for > 0 (see the top part of Fig. 1, where u(x,0) is
plotted as the solid line). Combining formulae 3.722.7 and 3.354.2 in |Gradshteyn
& Ryzhik (1980), we obtain

* kdk
u(x,0) = 2w H (7 — ) cosva + / [e"x_ﬂk” + e_(””“)k”} (2.9)

0 1+ k2’

It is clear that the last integral has a logarithmic singularity at £ = 7, and so we
have (see the top of Fig. [1)):

u(z,0) — 400 asz — 7w +0.

Differentiating (2.9), we get

o0 2 k
Uy (2,0) = —1// [e_(w_”)k" + e_(x+“)k”} —— forz>n
0
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which implies together with (2.9) that for x > 7 the function u(z,0) is positive,
monotonically decreasing, and convex. Moreover, it tends to zero as x — +oo (cf.
(v) in Lemma 2.2).

The behaviour of u(z,0) is more complicated when z € [0, 7), because the inte-
gral in (2.9) is a positive convex function of x, which increases monotonically from
a certain positive value to +o00. Therefore, for x belonging to some neighbourhoods
of x = 0 and z = 7 the inequality u(z,0) > 0 holds.

Lemma 2.3. There are ezxactly two zeroes of u(x,0) on (0,7) and the function
changes sign at these zeroes. The first zero is at x = x,, (see (iii) in Lemma 2.2)
and the second one at x = Ty, Ty < Tpp < 7.

Proof. 1t is clear that u(z,0) cannot have more than two zeroes because the second
zero of cosine in (2.9) is at * = 7 and the integral is a positive, monotonically
increasing, convex function since its derivative with respect to z is equal to

V/OO [e*(”*m)k” - e*(ﬂﬂg)k”} @ >0 forxzel0,m).

0 1+ k?

Moreover, if u(x,0) has zeroes, then there are exactly two of them between z = /3
and x = 7, thus it is sufficient to show that the function has one zero between x = 0
and x = 7. Since it is difficult to evaluate the rate of increasing of the integral in
(2.9), we will derive the existence of a zero from the fact that v(x,0) attains its
minimum at = x,, (see Lemma 2.2, (iii)), and s0 vz (Zm,0) = uy(2m,,0) = 0. Now
the boundary condition (1.2) gives that u(x,,,0) = 0. Formula (2.9) together with
the fact that the integral in (2.9) increases monotonically on [0, 7) implies that the
second zero zps of u(z,0) is between x,, and a and that the function changes sign
at its zeroes, which completes the proof. O

Corollary 2.4. Two nodal lines of u(x,y) emanate from (x,,,0) and (xpr,0).

Proof. Since u(x,0) changes sign at its zeroes, zero is not an isolated value of u(z, y),
and so two nodal lines do exist in {z > 0, y < 0}. O

Of course, all nodal lines of u in JR? are symmetric about the y-axis.

Lemma 2.5. There are two nodal lines of u in {x > 0,y < 0}; one of them
emanates from (x,,,0) and crosses the negative y-azxis and the other one emanates
from (zpr,0) and goes to infinity.

Proof. As in the proof of Proposition 2.1 we have from (2.1):

—2y(y* + 2% + %)
> + (@ —m)2][y* + (z + 7))

Uy—VU = / [cos k(z — 7) + cos k(z + m)] " dk =
0

The solution of this differential equation is

k(k? + 22 + 72)
k2 + (m —2)?] [k? + (7 + 2)?]

The last integral is a monotonically decreasing function of y; it is equal to zero for
y = 0 and tends to —oo as y — —oo. Therefore, there is a single nodal line of
below every interval of the positive x-axis, where u(x,0) > 0; that is, between the
origin and (z,,,0) and to the right of (zas,0). O

0
u(x,y) =e"¥ [u(:c,O) + 2/ [ e ™ dk|. (2.10)
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Theorem 2.6. Inside the domain bounded from below by the nodal line ¢,,, having
endpoints at (+xg,0), the sloshing eigenfunction u given by (2.1) has a single nodal
line with endpoints (£x,,,0).

The line ¢, (dashed line in Fig. [1, bottom) serves as the bottom B for the water
domain whose right half is shown. The nodal line of u (solid line in Fig. [1, bottom)
has both ends on the free surface F.

Proof. Note that the nodal line of u with endpoints (fx,,,0) cannot have a pair of
common points with the nodal line ¢,. Indeed, if there are such points symmetric
about the y-axis both functions v and v must vanish identically in a domain between
nodal lines because on each nodal line one of the functions satisfies the homogeneous
Dirichlet condition, whereas the homogeneous Neumann condition holds for the
other function on the same line. Since vanishing is impossible, there are no pairs
of common points and it remains to prove that the nodal line of u cannot have a
common point with £, on the negative y-axis.
At the point, say (0,yo), where £, intersects the negative y-axis,

VU<O7 ZUO) = VU(O, 3/0) - 07

where V is Hamilton’s operator for the gradient, because the negative y-axis is itself
a nodal line of v. However, it follows from (2.10) that

Yn vz + %)
y2 + 72] [y2 + 2]

Uy (0,yn) = —2[ < 0, where y, is such that u(0,y,) = 0.

Hence y,, # yo, which completes the proof. Ul

The example of the sloshing problem studied in this subsection disproves Lemma
of Kuttler (1984), but, of course, there are water domains for which nodal lines
connect F' with B as supposed by Kuttler (a rectangle with the free surface as the
top side is the simplest example).

(b) Properties of nodal domains

Let N(u) = {(z,y) € W : u(z,y) = 0} be the set of nodal lines of a sloshing
eigenfunction u. A connected component of W\ N will be called a nodal domain. On
account of (1.1) and (1.3), one concludes that each nodal domain has a piecewise
smooth boundary without cusps. The following simple assertion of Kuttler (1984)
is proved here for the sake of completeness.

Proposition 2.7. If R is a nodal domain of u, then RNF contains an interval of
the x-axis.

Proof. Let RN F be empty or consist of a finite number of points. Applying Green’s
identity to u in R, we get from the boundary conditions that [, |Vu|?dzdy = 0.
Hence u vanishes in R, and so u is identically equal to zero in W by the analyticity
of harmonic functions. O

Proposition 2.8. The number of nodal domains corresponding to w, is less or
equal ton + 1.
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Kuttler’s reasoning (Kuttler, [1984), which is a version of the Courant’s original
proof (Courant & Hilbert, 1953)), turns out to be the proof when the unnecessary
reference to the fallacious lemma is omitted.

An immediate consequence of Propositions 2.7 and 2.8 is the following

Corollary 2.9. The sloshing eigenfunction u, cannot change sign more than 2n
times on F.

It should be noted that the number of nodal domains corresponding to u,, is less
then n+1 in some cases. For instance, the eigenfunction constructed as the example
in Subsection 2.1 has two nodal domains. However, the corresponding eigenvalue
v = 3/2 is not the fundamental one. (This follows from Theorem 3.1 (ii), which
says that the fundamental eigenfunction has only one nodal line connecting F' and
B.) Therefore, the number of nodal domains in the example which is equal to two is
less than the maximal number permitted by Proposition 2.8 which is at least three.
On the other hand, the eigenfunctions in a rectangle have the maximal number of
nodal domains.

3. The fundamental eigenvalue is simple

The aim of this section is to prove the following

Theorem 3.1. (i) The fundamental eigenvalue of problem (1.1)—(1.4) is simple.
(ii) The corresponding eigenfunction has only one nodal line connecting F' and B.

This theorem is proved in Subsection 3.2.

(a) Variational principle for the stream function

Our proof of Theorem 3.1/is based on a variational principle for a boundary value
problem that is equivalent to (1.1)—(1.4) and involves a conjugate to u harmonic
function v (stream function). The latter satisfies

Vgg +Vyy =0 in W, (3.1)
—Ugy = VU, oOn F, (3.2)
v=0 on B, (3.3)

where condition (3.2) is derived from (1.2) by differentiation and application of the
Cauchy—Riemann equations; condition (3.3) is obtained from (1.3) by an appropri-
ate choice of the additive constant in v.

It is clear that the multiplicity of v as an eigenvalue of (1.1)—(1.4) is the same
as its multiplicity as an eigenvalue of (3.1)—(3.3).

Without loss of generality we assume that F' = {-1 < = < 1,y = 0}. The
next step for formulating a variational principle for problem (3.1)—(3.3) consists in
rewriting (3.2) in the form:

v=vKv, onlkF, (3.4)

where
1

(K f)() = / K(r,€) f(6)dé, K(r,¢) = K(€), and

-1

K(z,6)=(1-2)(§+1)/2 for £ < z.
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It is clear that K is a symmetric, positive operator in Lo(F'). Finally, by Dy we
denote the so-called Dirichlet-Neumann operator that maps ¢ given on F' into

Dy o = <I>y} 7» where ® must be found from the following Dirichlet problem:

V=0 inW, #=¢ onF, &=0 on B.

It is known (see, for example, Aubin, 1972, Chapter 7, Section 1) that Dy is a
positive, self-adjoint operator in Lo (F'). It follows from (3.1), (3.3), and (3.4) that
for finding the fundamental eigenvalue vy one can use the following variational
principle:

Vwl|?dxd
Y1 = min fW’ w| kel

: 3.5
weHL (W) fF Dyw (KDy) wdx (3.5)

where H}(W) is the subspace of H'(W) that consists of functions with vanishing
traces on B. Since the operator defined by the quadratic form in the denominator
is compact in Hg (W), there exists a nontrivial function w* for which the quotient
(3.5) attains the minimum. Moreover, it is easy to verify that VZw* = 0 in W.
Therefore, Dy w* = wy;, and so w* is an eigenfunction of (3.1)—(3.3).

Let v; and vy, be two different eigenvalues of problem (3.1), (3.3)), and (3.4), and
let v; and vg be the corresponding eigenfunctions. Combining the second Green’s
formula with the boundary condition (3.4)), one obtains the following orthogonality
condition for the eigenfunctions:

/vivkydx:/vﬂ)]\/vkdx:@.
F F

This condition allows us to extend (3.5) for finding the whole sequence of eigenval-
ues. Let vy,...,v,_1 be linearly independent eigenfunctions corresponding to the
first n — 1 eigenvalues. Then for finding the eigenvalue v,, we have the following
variational principle:

Jo |Vw|? dady
fFDNw (KDy) wdz’

vV, = min
where the minimum is taken over all nonzero w € Hx (W) such that

/wDNdex:O, k=1,...,n—1.
F

(b) Proof of Theorem 3.1
The first statement in Theorem 3.1/is an immediate consequence of the following

Proposition 3.2. The fundamental eigenvalue of problem (3.1)—(3.3) is simple
and the corresponding eigenfunction may be chosen to be positive in W U F.

Proof. Let us suppose that there exists an eigenfunction v that corresponds to 14
and changes sign in W. In view of (3.1) and (3.3)), v also changes sign on F. By v
and v_ we denote the positive and negative part of v, respectively. Let us suppose
that

/ Vi |? dedy > 1/1/ Dnvs (KDy) vy dx. (3.6)
w F
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The definition of ;1 and v gives
/ V| dzdy = vy / Dnv (KDy) vda. (3.7)
w F

Summing up two equalities (3.6) and subtracting (3.7), we get

0> / Dyov_ (KDy) v, da. (3.9)
F

Here we also used the fact that K is a self-adjoint operator. Now the equalities
vy =v+v- and Dyv =1y,

imply that
/DNU_ (KDn) v+dx:/DNv_leydx+/ Dyv_ (KDy) v_dz. (3.9)
F F F

The boundary condition (3.4) allows us to write the first term on the right as

1/1_1/7JD1\;1)_dx:V1_1/v_DNvd:z:7
F F

the latter equalty uses Dy = Dy. Applying the relation Dy v = v, and the bound-
ary condition (3.2), we arrive at

/DNU_Ivad:E:—V12/U—Umdﬂf:’ﬁz/(v—)azcdm-
F F F

This together with (3.9) shows that the right-hand side in (3.8) cannot be negative.
The obtained contradiction yields that (3.6) cannot hold for vy and v_ simulta-
neously. Besides, according to the definition of v, the inequality opposite to (3.6)
also cannot be true. Hence at least one of the functions v4 and v_, say v, delivers
the minimum to the quotient (3.5). Then vy is harmonic in W, which implies that
either vy or v_ is equal to zero identically. Thus v does not change sign in W (it is
positive without loss of generality), which guarantees that v; is simple.

The function v is positive on F' because v is a positive harmonic function in W
that satisfies the boundary condition (3.2). The proof is complete. O

Proof of Theorem 3.1. (ii). We consider the trace v(x,0) of the fundamental eigen-
function of problem (3.1)—(3.3) (this function is positive on F' and vanishes at the
endpoints of this interval). Let us show that v(z,0) cannot have more than one crit-
ical point on F'. If we suppose the contrary, then there must be either three points,
say xj, j = 1,2,3, such that v,(z;,0) = 0, or two critical points one of which is
multiple, that is v,, vanishes at this point. In the first case, u(x;,0) = 0 by the
Cauchy-Riemann equations and the boundary condition (1.2), and so the nodal
lines of uw divide W into at least three nodal domains which contradicts Proposi-
tion 2.8. In the second case, at least two nodal lines of u emanate from the point
on F, where v(z,0) has a multiple critical point. Again the nodal lines of u divide
W into at least three nodal domains which contradicts Proposition 2.8.

The existence of only one critical point of v(z,0) on F' implies that the same
point is the unique zero of u(x,0) on F'. The nodal line emanating from this point
has the second end on B. This completes the proof of Theorem [3.1. O
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Let us consider water domains satisfying an extra condition that W is contained
within the semistrip bounded by F and two vertical rays going downwards from the
endpoints of F. This condition was first introduced in the work by John! (1950) (now
it is usually referred to as John’s condition), where the so-called water-wave problem
was considered (see also Kuznetsov et al., 2002, Chapters 3 and 4). It occurs, that
if W satisfies John’s condition, then the second statement of Theorem 3.1 may be
improved.

Proposition 3.3. Let v be the fundamental eigenfunction of problem (3.1)~(3.3),
then v € CY(F). Moreover, if W satisfies John’s condition, then Fv,(+1,0) > 0.
We recall that without loss of generality F' is assumed to coincide with {—1 < x <
1,y =0}

Proof. To be specific we consider the corner point (1,0). The angle enclosed between
the corresponding unilateral tangents and directed into W we denote by a4 and r
is the distance to the point (1,0).

In order to apply the standard results on the asymptotics near a boundary corner
point for a solution to the Laplacian Dirichlet problem (see, for example, Nazarov &
Plamenevsky, 1994, Chapter 2), we integrate condition (3.2) twice with respect to
x. This results in the presence of an additional linear term in the local asymptotic
expansion as r — (. Besides, the next term is either O (7’2) or O (r”/c“r). Since
0 < ay <7 (a_ is the second angle adjacent to F), this implies that v € C1(F).

For proving the second statement it is more convenient to consider the endpoint
(1,0). From (3.4) we get that

1

0p(1,0) = ”/1 Ko (1,€) 1, (€,0) dé = —<u/2>/ (1+ €)1y (€, 0) de.

—1

Let w be a solution to the following Dirichlet problem
V2w=0 inW, w=1+2 onF, w=0 on B. (3.10)

Then the second Green’s formula allows us to write
1

v,(1,0) = —(1//2)/ wy v dé.

-1

Let us show that
wy(z,0) >0 forz e (—1,1). (3.11)

This proves the second statement of our proposition because the equality in (3.11)
cannot hold identically.

For proving (3.11), we seek w in the form 1+ = + w; and get from (3.10) that
wiy must satisfy

V2w, =0 inW, w; =0 onF, w; =—(1+x) on B.

According to John’s condition w; < 0 on B, then the maximum principle guarantees
that wy < 0 in W. Hence

wy(z,0) = wiy(x,0) >0 on F,

and so v;(1,0) < 0. In the same way one obtains the inequality v,(—1,0) > 0,
which completes the proof. O
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Figure 2. Nodal lines of u (solid lines) and v (dashed lines) given by (2.1) and (2.2),
respectively, with v = 5/2.

Corollary 3.4. Let W satisfy John’s condition, then the endpoints of F' do not
belong to the nodal line of the fundamental eigenfunction wu.

Proof. If we suppose that u(1,0) = 0, then we get from the local asymptotics that
u=0 (r’r/o“f) and u, =0 (7“"/0‘+_1> as r — 0,

where r is the distance to the point (1,0) (see the proof of Proposition 3.3 for
the corresponding reference). On the other hand, u,(1,0) = —v,(1,0), which does
not vanish according to Proposition [3.3. This contradicts to the second asymptotic
formula above. The proof is complete. O

4. Discussion

(a) The case of connected free surface

In Section 2 we constructed an example of the water domain such that there
exists a sloshing eigenfunction u having a nodal line whose both ends are on the free
surface (see Fig.[1]). The velocity potential (2:1) and the stream function (2.2) used
for this purpose allow us to obtain more examples with the same property. One of
them is shown in Fig. |2, where the right half of the water domain symmetric about
the y-axis is bounded by the exterior dashed line which is again a nodal line of the
stream function. In this example the value v = 5/2 is used and for the justification
one has to follow the same method as in Subsection 2.1. Of course, there are two
nodal lines of u having both ends on F' in the whole W, but the main novelty of
this example is the presence of the nodal line of the stream function v with both
ends on F' (the interior dashed line).
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Let us turn to some open questions concerning the eigensolutions to problem
(L.I)-(L.4). The first of them is related to the number of sign changes on F' of the
eigenfunction u,. Our Corollary 2.9 gives only a rough upper bound 2n for this
number and the question is whether one can replace 2n by n as stated in (Kuttler,
1984), where the proof is based on the fallacious lemma. Of course, it follows from
the explicit expression that the nth sloshing eigenfunction has n changes of sign
when W is a rectangle and F' is its top side.

Another open question is whether all eigenvalues of problem (1.1)—(1.4) are
simple. There are a number of particular geometries for which all eigenvalues are
proved to be simple. Of course, this is obvious for rectangular domains whose top
side is the free surface (by separation of variables one obtains the explicit expres-
sions for both eigenvalues and eigenfunctions in this case). A less trivial result is
given implicitly in § 258 of the book by Lambl (1932), where Kirchhoff’s solution
is presented for the case when B is formed by two segments at /4 to the vertical
(we recall that it is assumed that F = {—1 < 2 < 1, y = 0}). For this triangle the
eigenvalues are
)(—1)"

Vp = p (tanh g, ,  where p,, n=1,2,...,

are positive roots of cos2ucosh2u = 1 (actually, our formulae are a unified form
of those in Lamb (1932), where the symmetric and antisymmetric sloshing modes
are considered separately). Since the roots of the last transcendental equation are
simple, the sloshing eigenvalues are also simple. Recently, Kuznetsov & Motygin
(2003) established that all eigenvalues are simple for W = IR? when F consists
either of one gap or of two equal gaps in the rigid dock covering W. Finally, for the
domains which intersect the x-axis at right angles all eigenvalues with sufficiently
large numbers are simple. This follows from the asymptotic formula
I/I%—%—i—O(n_l) as n — 00,

that was proved by Davis (1969) and a simplified proof was given by [Ursell (1974).
Here k4 (k_) is the curvature of B at the right (left) intersection with the z-axis.

The following heuristic reasoning demonstrates a possibility of the existence of
a domain for which two nodal lines emanate from one point on B. Let us transform
continuously a rectangle having the top side as the free surface into the domain
obtained by reflection in the y-axis of the domain shown in Fig. (1. The second
sloshing eigenfunction in the rectangle has two vertical nodal lines, but there is
only one nodal line having both ends on the free surface in the domain obtained
by the described reflection. Therefore, a domain for which two nodal lines emanate
from one point on B should arise at a certain intermediate stage of such continuous
transformation.

Besides, it is unknown whether two nodal lines can emanate from one point on
F or from a corner point between F' and B, but this is admissible when F' consists
of several intervals (see next subsection).

(b) Other geometries

Numerical computations demonstrate that a nodal line emanating from the
corner point, where F' and B meet, does exist in the water domain whose free
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Nbh~O
N

v(z,0)
u(z,0)

1 2 3 4

Figure 3. Nodal lines of u (solid line) and v (dashed line) given by (2.1) and (2.2),
respectively, with v = 2.00228. . .; the dot-dash line is the level line v(z,y) = —1.

surface consists of two intervals (see Fig. [3). This domain is constructed with the
help of level lines of the stream function v given by (2.2) with v = 2.00228....
(In this case u and v describe propagation of waves in R%, and the corresponding
integrals are understood as the Cauchy principal values, but this is unimportant
because we are concerned only with a bounded subdomain of IR?.) The domain
shown in Fig. 3 is bounded by:

1. Two nodal lines of the stream function, one of which is the negative y-axis
and the other one is plotted by the dashed line.

2. The level line v = —1 shown by the dot-dash line that has both ends on the
z-axis and thus cuts out the source point at (m,0) from the water domain.

Hence the free surface, bounding this water domain from above, consists of two
intervals. The nodal line of the velocity potential u is shown by the solid line. The
existence of v, for which the behaviour of the nodal line is as is shown in Fig. 3]
can be proved in the same way as in Subsection 2.1 starting with the investigation
of the graphs of u(x,0) and v(x,0) (see Fig. 3, top). It is clear that by reflecting
the water domain shown in Fig. |3 one obtains the case when two nodal lines of u
emanate from one point on F', which now consists of three intervals now.
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Figure 4. Nodal lines of u (solid line) and v (dashed line) given by (2.1) and (2.2)),
respectively, with v = 2; the dot-dash line is the level line v(z,y) = —1.

It is interesting to note that in the two-dimensional sloshing problem with dis-
connected F' a nodal line of u can connect two rigid boundaries, where condition
(1.3) holds (this is impossible when F' is connected). In Fig. 4/ obtained for v = 2
in (2.1) and (2.2) (again the integrals defining u and v must be understood as the
Cauchy principal values), the water domain is similar to that in Fig. [3 but the
nodal line of w connects two rigid boundaries. It is clear that this is impossible
when F' is connected and W is simply connected.

In conclusion, we make some notes about the three-dimensional sloshing prob-
lem. First, the assertions similar to Propositions 2.7 and 2.8 are also true in this
case. However, even the fundamental eigenvalue (not to mention any others) is mul-
tiple for some container geometries. One can verify this by separation of variables
for vertical cylinders having the horizontal bottom and either circular or square
cross-section. Second, it should be emphasized that the plethora of possibilities for
nodal surfaces in the three-dimensional sloshing problem is much greater than in
the two-dimensional case. This can be easily seen in the case of a container that has
vertical sidewalls and a horizontal bottom because this geometry allows us to re-
duce the sloshing problem to the free membrane problem by separating the vertical
variable.
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