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STATEMENT OF THE PROBLEM
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Ansatz:  u(x,y, z,t) = u(z,y)sinmz cos wt

Problems for symmetric u(*) and antisymmetric «(~) mode
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LOCAL ASYMPTOTICS NEAR DOCK TIPS

Polar coordinates (p,0), (z — b= pe'?, 2 = x + iy):

Gyu =0 | Oyu = Vu

b, 0 (
( )\K(pﬁ)

By Wigley (1964), Nazarov, Plamenevsky (1994)

u ~ P(p,log p), where P is a polynomial function

Local asymptotics for the potential

u®) (p, ) = c(i){—ﬁ/v(i) + p(cosflog p + (m — 0)sin0) }
+d®Ppcosf + ' F (p, 0)

and for a complex conjugate stream function

0 F(p,0) =& — Fplsindlogp + (0 — ) cos ]
— dFpsinf + ¢ (p, 0)

with some coefficients b™*), ¢ and d&)

As p — 0,
P&, 0H =0(p™), [V =|VeH| =0(p°)

where d > 0



ANTISYMMETRIC MODES. INTEGRAL EQUATION.

Completing Miles (1972) scheme (based on Fourier transform)

For m =0

() b+l
gy = () 1oe LS

d¢, xe(bb+1)

1 bt 2 | 2
In the fluid: w ) (z,y) = —/ w7 (€) log (r+& " +y d¢
. _

For m # 0

(=) bl

ul(2) = —— [Ko(m(z +€)) — Ko(mlz —€[)] ul(€) de,

™ Jb

x € (b,b+ 1)
Restoring the potential in the fluid by

1 b+1

uE) [ Ko (my/ e+ 7 + )
— Ko(my/(e = €7 + 7 | d¢

U/(_)<£C,y> — _% )

(Ky is the modified Bessel function)

Consequences:

(7) For any b > 0, there exist a sequence of eigenvalues

0< 7 <« < <) <

n

and u\™(2:b) > 0 for x € [0, 1]

(7) The values of v (b) are monotonically decaying in b



NUMERICAL RESULTS, ANTISYMMETRIC MODES
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SYMMETRIC MODES, INTEGRAL EQUATION, m =0

Fourier transform
2 o0
w ) (x,y;b) = —/ f(k) e cos kx dk
T Jo

Applying 0, and the inverse transform for y = 0

00 b+1
kf(k) = /0 8,ul (€, 0;b) cos k¢ A€ = v (b) /b u ™) (€,0;b) cos ké d€

Then,

00 b+1
™) (z,0;0) = V(Jr)(b)z/ k™! cos kx dk:/ u ™ (€,0:0) [cos k& — 1] d¢
0 b

v

(since fbbﬂ u™)(z,0)dz = 0 by zero flux condition)

Integral equation

b+1
u(z) = —/Hr! / [log(z + &) +log |z — &[] u™(¢) d¢,
b

ze (byb+1)
The integral equation is not correct !

(it has no solutions orthogonal to constant)

Assuming the contrary, restoring the potential in the fluid by

1 b+1

W (z,y) = — u(E) logl(z + &) + ) ((z — €)* +y*)] dé¢

2r J,

u)(x,y) = O(|z|7?) as z — oo. Such decaying is not allowed.



NON-EXISTENCE OF SYMMETRIC MODES
DECAYING AT INFINITY (m = 0)

If/ (’VU(+)‘2 + ‘U(JF)IQ) dzdy < 0o, then ut) =0 in Q
Q

The proof follows M. Mclver (1999) (the 14th IWWWEB)

Introduce the stream function ¢ complex conjugate to u = u(t

Y
T p =10 p =0

o
Ll

By the assumption : x

u,o — 0as z—0 :tp:O 0
|
|

Green’s formula for harmonic functions u? — ¢? and x

{(u2 — 902)7% — 20, (u2 — @2)} ds =10
oQ
+ boundary conditions

0 b+1
/ u2dy+/ xay(u2—902) dr =0
b

— 00

By Cauchy-Riemann conditions 9, (u® — ¢*) = =0, (2uyp) and
(+ boundary conditions) in the gap 2up = %@ugp = —#@c (902)

: 2 1 i 2 1 2
/ uw dy = @ ) 0, (p*) dz = —m[w(x,())]

— o0

u(0,y) = 9,uM(0,y) =0 = uP =0inQ



SYMMETRIC MODES, CORRECT INTEGRAL EQUATION

Following Davis (1970), introduce

W(z;{):—%{log( 8(z — &) _1+2z10g(1+2z)

1 —22)(1 — 2€) 2 1— 22

1126 [1+2\ 1 .
- log<1_2§>+§—m(z+§)}

For one gap (—1,1) all modes can be found from

u(x,0) = V/_ u(€,0) ReW(x, &) d€

1

The symmetric two-gap problem is equivalent to the spectral problem

b
uw ) (z) = ) " G(x,0;€) ™D () de, z e (bb+1)
b

Green’s function:

G(r,y;6) = tRe{W(z+ b+ 36 +b+ D+ W(z—b— 16— 1)
FWEHb+ Lo+ D)W —b—L——b— 1)} — g(b)

where

go(b) = % 267 log(2b) + 2(1 + %) log[2(1 + b)] — (1 + 2b)*log(1 + 2b)]

and
b+1 b+1

G(x,0;§) do = G(2,0;§)dg =0
b b
For y =0

0 for z€(0,b)U(b+1,+00)

1
ay[G(x,y,§)+;10g|Z_5H - {_1 for x € (b,b+1)



Restoring the potential in the fluid by

b+1
u ) (z,7) :/b W) Gz, y:€)dE, (z,y) €Q

Hence, v (x,9) = ¢ + O(|z|7?) as z — 00, ¢ = const # 0

Another way to the integral equation

For m # 0 the kernel by Fourier transform
Go(w, &) =7 [Ko(m(z +€)) + Ko(mlz — )]

will not deliver solutions satisfying zero flux condition

b+1 " " b+1 "
- _ L+ - _
b o,u"(z,0)dz = v /b u N (z,0)dz =0

The correct kernel orthogonal to constant is as follows

G(:U,f) — Go(iﬁ,g) - f(il?) - f(f) + Co

where
b+1 b+1

flz) = Go(z,§)dg,  Co = f(&)dg

b b

Integral equation

b
u(z) = vt +1G<ac,o;5> ut(©)ds, ze(bb+1)
b



NUMERICAL SCHEME, SYMMETRIC MODES (m = 0)

_4b—3  —4b—1 —1 ﬁ1

Change the .

coordinate system

to seek solutions to the integral equation

1
u(z) =) / G(2,056) () dg, =€ (-1,1)
~1
k=1
where P, are the Legendre functions of the first kind

Since the system { P} is orthogonal, the integral equation turns to

2cm—i—zz 2n—|—1)%(2m+ %{Imn+I;n}cn =0,n,m=1,2,...

h
WHELE / / £)log |z — €] da de,

/ / E)log(z + &+ 4b+ 2)dx dE
By Davis (1970) I,,, = 0 when m — n is odd; for even m —n
[ 8
" (m+n)2+m+n)[(m—n)2—1]

Besides,

2 1
Lo =57 | Pl Quan(—€ ~ 15 -2) — Quos(-¢ — - 2)} g

where (), are the Legendre functions of the second kind



NUMERICAL RESULTS AND ASYMPTOTICS
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Asymptotics for large b

lim v (b) = lim {7 (b) = 2\,

i
where )\, are eigenvalues of the problem with one gap (—1,1)
Aoni1 = V50 (0),  Agn = {P(0), n=0,1,2,...

n
For m =0, I/(()+) = 0 corresponds to trivial mode uéﬂ = const;

For m # 0 the mode ué+) is not trivial and Vé+> # 0

For m =0, as b — oo,

T log(2b) + g + O (1/logb),

VE_)
A7 1
1 - wg_)(a:) = 17 [5 + xlogx + (1 — ) log(1 — z)

1
+0 (1/log”b) (wg_) > O,/ w(_)(:ﬁ) dr =1)
0



DERIVATIVE OF EIGENVALUES AS
FUNCTIONS OF SPACING BETWEEN GAPS

_b ﬂ%x
—b — ¢ '7 E
|
Ezb/—b>0 :FO Q
b:uy,, v, |
bl vl |

By Green’s formula over (),

0= / {un(?yu% - u;(?yun} dz + / {u;&ru;j — unﬁyu;} dy
F F

0

Antisymmetric modes

By the condition on F' and on Fy,

v =] / Unu,, dx :/ u,, 0, Up Ay
F Fo

Since u! (x,y) = —e0,ul, (0(y),y), 0 < O(y) < €, when x € [0, €,

[V — V] /Fun(:c,O) /FO o (0(y),y) 0, un(0,y) dy

As € — 0, this gives

S 0w (0,y)] dy

db fbbﬂ‘uq(f)(x, O)‘2 dx




Symmetric modes

I [\@/ i (0,9)]" +m2[ui? (0, y)ﬂ dy

db Jul? (2, 0)] da

Interesting to compare with the Rayleigh quotient

Jr2 [‘Vuv(zi)(aiay)}z + mﬂu%i)(x,y)ﬂ dz dy

" 2 [ ul (2,0 da

Example of another configuration (symmetric in x)

for which the method is applicable

AY




SUMMARY:

Sloshing problem is considered for an inviscid incomressible heavy
fluid that occupies a channel with rigid walls and is covered by a

rigid dock with two equal, strip-like apertures.

The problem is reduced to spectral problems for integral equations

(different for symmetric and antisymmetric modes).

[t is proved that the antisymmetric (symmetric) sloshing eigenval-
ues are monotonically decreasing (increasing) functions of spacing

between gaps and formulae for their derivatives are obtained.

Simplicity of eigenvalues is shown and their limit properties when

spacing tends to zero and infinity are studied.

Numerical scheme is developed and computations for eigenvalues

are made.

Asymptotics of solutions to the problem near dock tips are obtained

(m = 0).

Non-existence of symmetric modes decaying at infinity is proved

(m =0).



