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RADIATION PROBLEM
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BOUNDARY INTEGRAL EQUATIONS

Presentation of potential
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FAR FIELD ASYMPTOTICS
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LIMIT CASE OF HIGH FREQUENCIES

As w — 00 (Vv — 00), (1+8)¢§-2) —(bgl) =0,y=0
No waves and hydrodynamic loads consists of added mass only

Consider h < 0. Multipoles (m > 1)
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LIMIT CASE OF LOW FREQUENCIES w — 0 (v — 0)

Homogeneous fluid

Greenhow & Yanbao (1987) p11(w) — p11(0)
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Two-layer fluid

Matched asymptotics. Outer solutions for horizontal and vertical

oscillations:
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LIMIT CASE OF LOW FREQUENCIES (2)
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Inner problems:
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Then, by matching inner and outer solutions,
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V() is the area of body part in L®), C' ~ 0,5772 is Euler’s constant,

b is the half of water-line, kg = v(p2 + p1)/(p2 — p2)

For circular cylinder
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REFLECTION COEFFICIENT
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Cylinder of radius a with centre at (0, h)

under interface U h/a = —0.5
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2.0

Cylinder of radius a with centre at (0, h

)
in the interface 407 h =20
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Cylinder of radius a with centre at (0, h)

above interface m h/a = 0.5
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SUMMARY:

Linear 2-D water-wave problem, describing small oscillations of a hori-
zontal cylinder in the interface of two unbounded superposed fluids of

different density, is considered.

For a body of arbitrary shape a system of boundary integral equations

is derived, a solution is sought in the form of a single layer potential.

It is shown that the potential density can have a singularity at the points,

where wetted contour coincides with the interface.

Asymptotic formulae for the added mass and damping coefficients at low

frequency are derived.

For the circular cylinder the problem is solved by the multipole expansion

method.

Influence of stratification and position of the cylinder at the interface is
shown to be essential for radiation loads and reflection coefficient in the

diffraction problem.

Unlike the case of a body, which is totally immersed in one of the lay-
ers, radiation loads by interface-piercing body depend on the type of

oscillations, and the reflection coefficient is not identically zero.

FUTURE WORK:

effects of the second order; e 3D problem; e the case of smooth picno-

cline, e.g. of that described by the function p(y) = po[1 — 5 tanh Z].



