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Abstract. The Steklov problem is considered in cylindrical domains; the coefficient in
the boundary condition has a compact support and is an even function of a coordinate
varying along the generators. We study the dependence of eigenvalues on the spacing
between two symmetric parts of the coefficient’s support. It is proved that the antisym-
metric (symmetric) eigenvalues are monotonically decreasing (increasing) functions of
the spacing and formulae for their derivatives are obtained. Application to the sloshing
problem in a channel covered by a dock with two equal rectangular gaps is given.

1 Sloshing in a channel covered by a dock with two equal
rectangular gaps

First we consider in more detail a particular case of the Steklov problem that
has a clear hydrodynamic interpretation; for the general statement results are
outlined in Sect. 2.

Let us begin with the problem of sloshing frequencies in a channel having
infinite depth, parallel vertical walls, and occupied by an inviscid, incompressible,
heavy fluid covered by a rigid dock so that the free surface consists of two parallel
gaps of a unit length at distance 2b (see fig. 1). Neglecting the surface tension, we
consider free, small-amplitude, time-harmonic oscillations of the fluid; its motion
is assumed to be irrotational.

The sloshing problem with a single gap over a half-plane has received much
consideration (see [1,2] and references cited therein) because eigenvalues of this
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problem furnish universal upper bounds for sloshing frequencies in the two-
dimensional domains having the same free surface. The case of a two-gap dock
over a half-plane was considered by the authors in [3].

The aim of the present note is to give more general application of the ap-
proaches suggested in [3], which allows us to establish that the eigenvalues are
monotonic functions of spacing between gaps and to derive formulae for their
derivatives with respect to spacing in terms of energy integrals of the correspond-
ing eigenfunctions.

Applying the ansatz U(x, y, z, t) = u(x, y)
{ cos mz

sin mz

}
cos ωt (where t is time

and ω is the radian frequency of oscillations) and taking into account symmetry
of the domain we arrive at the problems for symmetric u(+)(x, y) and antisym-
metric u(−)(x, y) modes

∇2u(±) = m2u(±) in Q, (1)

∂xu(+) = 0, u(−) = 0 when x = 0, y < 0, (2)

∂yu(±) = 0 when y = 0, 0 < x < b, x > b + 1, (3)

∂yu(±) = ν(±)u(±) when y = 0, b < x < b + 1, (4)∫

Q

∣∣∇u(±)
∣∣2 dx dy < ∞, (5)

where F = {b < x < b + 1, y = 0}, and it is convenient to restrict our consider-
ations to the quadrant Q = {x ≥ 0, y ≤ 0}.

Following [3], where the case m = 0 was considered, we can prove that the
antisymmetric problem (1)–(5) is equivalent to spectral problem for the following
integral equations on (b, b + 1): for m = 0,

u(−)(x) =
ν(−)

π

∫ b+1

b

u(−)(ξ) log
x + ξ

|x− ξ| dξ, (6)

and for m 6= 0,

u(−)(x) =
ν(−)

π

∫ b+1

b

[
K0

(
m|x− ξ|)−K0

(
m(x + ξ)

)]
u(−)(ξ) dξ, (7)

where u(−)(x) = u(−)(x, 0) and K0 is modified Bessel function.
The symmetric problem (1)–(5) can be shown to be equivalent to spectral

problem for the integral equation

u(+)(x) = ν(+)

∫ b+1

b

G(x, 0; ξ) u(+)(ξ) dξ, x ∈ (b, b + 1). (8)

The kernel is as follows

G(x, ξ) = G0(x, ξ)− f(x)− f(ξ) + C0,
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where

G0(x, ξ) =

{
−π−1

(
log(x + ξ) + log |x− ξ|) for m = 0,

π−1
[
K0

(
m(x + ξ)

)
+ K0

(
m|x− ξ|)] for m 6= 0,

and the rest terms are defined as follows:

f(x) =
∫ b+1

b

G0(x, ξ) dξ, C0 =
∫ b+1

b

f(ξ) dξ.

They are introduced because solution to the integral equation must satisfy the
condition: ∫ b+1

b

u(+)(x, 0) dx = 0,

which follows from (1)–(5) (see [1,3] for details). Many properties of ν(±) and
u(±) can be derived from (6)–(8), in particular, it follows that the eigenvalues
and eigenfunctions are continuous functions of the parameter b > 0.

Our purpose is to prove the following formulae for derivatives

dν
(−)
n

db
= −

∫ 0

−∞
∣∣∂xu

(−)
n (0, y)

∣∣2 dy
∫ b+1

b

∣∣u(−)
n (x, 0)

∣∣2 dx
, (9)

dν
(+)
n

db
=

∫ 0

−∞
[∣∣∂yu

(+)
n (0, y)

∣∣2 + m2
∣∣u(+)

n (0, y)
∣∣2

]
dy

∫ b+1

b

∣∣u(+)
n (x, 0)

∣∣2 dx
. (10)

These formulae immediately prove monotonicity of eigenvalues as functions of
distance between the gaps and describe the monotonic behaviour quantitatively.

We shall derive the formula for symmetric modes, the computations for an-
tisymmetric case are analogous. Let u

(+)
n (x, y; b) be a symmetric eigenmode cor-

responding to the sloshing eigenvalue ν
(+)
n (b). We can see from (8) that ν

(+)
n (b)

is a differentiable function of b > 0. Let ∆ be a sufficiently small number (such
that b + ∆ > 0). After extending u

(+)
n (x, y; b + ∆) to the whole half-plane y < 0

by application of the Schwarz Reflection Principle to the harmonic potential U

(a solution to (1) is not harmonic when m 6= 0), we consider u
(+)
n (x+ ∆, y; b+ ∆)

defined in the closed quadrant {x ≥ 0, y ≤ 0} even when ∆ < 0. The latter
function satisfies the similar boundary conditions as u

(+)
n (x, y; b) on

{0 < x < b, y = 0}, {b < x < b + 1, y = 0} and {b + 1 < x < +∞, y = 0}

respectively. Further we apply the second Green’s formula to u
(+)
n (x, y; b) and

u
(+)
n (x + ∆, y; b + ∆) in {x > 0, y < 0}. This gives

∫ b+1

b

[
u(+)

n (x, 0; b) ∂yu(+)
n (x+∆, 0; b+∆)−u(+)

n (x+∆, 0; b+∆) ∂yu(+)
n (x, 0; b)

]
dx

=
∫ 0

−∞

[
u(+)

n (0, y; b) ∂xu(+)
n (∆, y; b + ∆)− ∂xu(+)

n (∆, y; b + ∆)u(+)
n (0, y; b)

]
dy
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because (5) guarantees that the integral over a large quarter-circle tends to zero
as its radius goes to infinity; the homogeneous Neumann condition on the dock
is also applied here. Using (2) and the Lagrange theorem in the second integral,
and the free surface conditions in the first one, we get

[
ν(+)

n (b + ∆)− ν(+)
n (b)

] ∫ b+1

b

u(+)
n (x, 0; b) u(+)

n (x + ∆, 0; b + ∆) dx

= ∆
∫ 0

−∞
u(+)

n (0, y; b) ∂2
xu(+)

n (θ(y)∆, y; b + ∆) dy,

where 0 < θ(y) < 1 for y ∈ (−∞, 0). Letting ∆ → 0 in this equation divided by
∆ produces

dν
(+)
n

db

∫ b+1

b

∣∣u(+)
n (x, 0; b)

∣∣2 dx =
∫ 0

−∞
u(+)

n (0, y; b) ∂2
xu(+)

n (0, y; b) dy.

In order to obtain (10), it remains to transform the last integral using the equa-
tion (1) and then applying integration by parts. The out of integral terms vanish
because ∂yu

(+)
n (0, y; b) satisfies the no flow condition on the dock and decays at

infinity.

2 The Steklov problem in a cylinder: dependence of
eigenvalues on a parameter varying along generators

The above scheme for proving formulae (9), (10) is applicable to more gen-
eral situations. As an example we consider the following version of the problem
proposed by Steklov [4] in 1902 and now referred to as the Steklov problem.
Consider an infinitely long cylinder Ω = D × R1, where D ⊂ R2 is a domain
with piecewise smooth boundary. By p+ we denote a bounded positive function
on Γ = ∂D × R1 having a compact support S+ ⊂ ∂D × R1

+ (see fig. 2). For
b > − dist

(
S+, {x = 0}) and (x, y, z) ∈ Γ we introduce pb as follows:

pb(x, y, z) = p+(|x| − b, y, z).

y

x

z

D
S+

Fig. 2.
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For this geometry we can also distinguish symmetric and antisymmetric in
x solutions u(+)(x, y, z) and u(−)(x, y, z), respectively, satisfying the following
problem

∇2u(±) = 0 in Ω,

∂xu(+) = 0, u(−) = 0 when x = 0, (y, z) ∈ D,

∂nu(±) = ν(±) pb u(±) on Γ,∫

Ω

∣∣∇u(±)
∣∣2 dx dy dz < ∞,

where ∂n stands for the derivative in the direction of the exterior unit normal
to Γ .

In this case it is not possible to obtain such simple integral equations as in
the case of two rectangular gaps. Providing that yet continuous dependence of
u(±), ν(±) on b is established, application of the scheme given in the previous
section immediately leads to the formulae

dν
(−)
n

db
= −2

∫
D

∣∣∂xu
(−)
n (0, y, z)

∣∣2 dy dz
∫

Γ
pb

∣∣u(−)
n

∣∣2 ds
,

dν
(+)
n

db
= 2

∫
D

∣∣∇y,z u
(+)
n (0, y, z)

∣∣2 dy dz
∫

Γ
pb

∣∣u(+)
n

∣∣2 ds
.

Note that the above formulae give the derivatives with respect to b of the
Rayleigh quotient

ν(±)
n =

∫
Ω

∣∣∇u
(±)
n (x, y, z)

∣∣2 dx dy dz
∫

Γ
pb

∣∣u(±)
n

∣∣2 ds
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