
Abstract. The status of knowledge of phase nucleation and
growth processes on a solid surface in one- and multicomponent
systems is surveyed. The formation kinetics and subsequent
evolution of new phase islands are investigated. Models for
film growth from the vapor and solution-melt are analyzed
which include island distribution by size, the degree of coales-
cence, island orientation, morphological stability, etc. The
Ostwald ripening of the ensembles of multicomponent islands
of a new phase is considered for both the isothermal and non-
isothermal cases and nonlinear effects involved in the growth of
continuous structures are examined. The problem of controlla-
ble growth of new phase layers is discussed.

1. Introduction

The surprising progress in micro- and optoelectronics, optics
and other fields of engineering that have transfigured the
world of information within a short period of time is directly
related to the development of thin-film technologies. During
film growth, experimenters and technologists are forced to
control a whole number of parameters, such as material and

structure of the substrate, its temperature, the composition of
vapor, and the intensity of its inflow. To obtain the film
structure and composition needed, these parameters are
selected as a rule empirically. Films of increasingly involved
composition and structure have been required of late, for
example, high-temperature superconducting films, films of
materials with exceptionally low values of saturated-vapor
density (TiN, GaN), films containing quantum wires and
quantum dots, etc. It is already clear today that further
development will be impossible without analysis of the
complicated physical phenomena that take place during
thin-film growth [1 ± 27]. The study of these phenomena
began in the mid-1950s. Principal attention was paid to the
new-phase nucleation on the solid surfaces. Initially, the main
theoretical analysis of new-phase nucleation [12 ± 16] was
carried out in the framework of the classical nucleation
theory by Zel'dovich [28], disregarding the variation of
supersaturation during condensation and the more so
disregarding the possible change of the growth mechanisms
in individual islands. Hence, the comparison of experimental
results on surface new-phase nucleation with the Zel'dovich
theory revealed a substantial difference between them. This
led the researchers to an erroneous deduction for the
impossibility of using the concepts of the classical theory of
phase transitions in surface processes and the necessity of
rejecting them. In particular, it was assumed that such
quantity as the specific interphase energy could not be used
at all in the description of the early stages of thin-film
nucleation. That is why, in the early 1960s, the so-called
discrete models appeared that described the new-phase
nucleation with the help of the methods of equilibrium
statistical mechanics. The most remarkable in this sense
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were the Walton ±Rodin [29], Lewis ± Cambell [30] and
Zinsmeister [31] models. It should be noted that these
theories were inapplicable to the description of nucleation of
stronglymetastable and unstable systems in the samemeasure
as the rejected Zel'dovich model because they ignored the
most important effect, namely, the increasing of long-wave
density fluctuations in the spinodal region [32, 33]. To
establish a correspondence between the theory and experi-
ment, it was actually quite enough to allow for the variation of
supersaturation in time and the related possibility of changing
growth mechanisms of individual islands [5, 11, 17]. Further-
more, most of the models were constructed for single-
component films only, while a wide variety of experiments
were carried out with multicomponent systems. The needs of
engineering led in the course of time to the necessity of
obtaining composite multicomponent films with prescribed
properties and composition, and the above-mentioned mod-
els could in no way give answers to these questions. They
rather `diverted' the researchers from the straight pathway.

Meanwhile, fundamental studies of the kinetics of first-
order phase transitions were being conducted in the same
period. It was shown that the kinetics of first-order phase
transitions was a complicated multistage process accompa-
nied by various nonlinear phenomena [34 ± 55]. Such stages
typically include nucleation, the separate growth of new-
phase nuclei, coalescence, and the late stage, i.e. Ostwald
ripening, where the growth of the larger islands proceeds at
the expense of dissolution of the smaller ones. This process is
due to the difference of the Laplacian pressures on the large
and small nuclei. The indicated processes have widely
different time scales. The most rapid stage is the nucleation,
then goes the separate growth, and so on. This time hierarchy
means that the fast processes have time to `keep up' with the
slow ones [52]. Solution of the equations for fast processes
provides, in fact, the initial conditions for the equations of
slower processes. It turned out that the solution obtained by
Zel'dovich was valid at the nucleation stage only. At later
stages it is necessary to take into account the equations of
conservation of matter in a system and to solve the
corresponding nonlinear problems. The extension of these
ideas and methods to film growth processes, as well as the
development of a consistent field approach [54] providing a
unified standpoint for the description of condensation under
any arbitrarily high supersaturations offered quite a new view
of the problems of the formation and growth of thin films.
The supersaturation levels were found for which it was
necessary to employ the classical nucleation theory for the
description of the film growth, and also the levels for which it
was necessary to use the field approach [54]. All this made it
possible to apply a unified approach to the description of
condensation of composite multicomponent films irrespec-
tive of the type of the initial phase (vapor, gas, liquid, etc.) and
condensation conditions. It was shown that the surface brings
appreciable diversity to the phase transformation, although
the basic stages of this process remain unchanged. It is in this
context that the modern ideas of film condensation processes
are presented in the review.

Our aim here is to give a general outlook of the whole
variety of processes proceeding on a solid surface in the
course of new-phase nucleation on it. We consider the
growth of single- and multicomponent films from vapor,
solution, and melt. Great attention is paid to the nonlinear
phenomena accompanying the new-phase nucleus growth
and to the methods of their description.

Section 2 is devoted to the formation of a layer of
adsorbed particles on a substrate surface and to the main
properties, kinetic and thermodynamic, of this layer. Surface
nucleation under permanent supersaturation is discussed (a
change in supersaturation is a slower process). All possible
growth mechanisms of new-phase nuclei are enumerated, and
the stability of the form of growing islands is analyzed.

The evolution of the size distribution of phase nuclei with
allowance for a decrease of supersaturation, i.e. the kinetics of
the proper phase transition is described in Section 3, where
the multicomponent case as well as the growth from solution-
melt are also examined. Closest attention is given to the
possibility of presenting the solution of the main system of
equations (in the general case) in the form of a convergent
series in powers of the inverse number of particles in critical
nuclei under maximum supersaturation. Convergence of the
series in this perturbation theory is provided by time
renormalization.

Section 4 deals with the interaction of growing islands at
the late stage of condensation. The Ostwald ripening with all
its features, as well as the methods of film growth control at
this stage (the characteristic time of Ostwald ripening is much
longer than the nucleation time) are discussed in detail.

Section 5 is concerned with the final stage of thin-film
condensationÐ the formation and evolution of a continuous
structure. Much attention is also paid here to the nonlinear
processes, in particular, the appearance of nonlinear density
waves.

In conclusion we briefly discuss the prospects of the
development of the thin-film condensation theory.

2. Elementary processes on solid surfaces

2.1 Types of solid surfaces
An important specific feature of the new-phase nucleation on
the substrate surface compared to homogeneous nucleation
in the bulk is the presence of various defects on the substrate.
Defects are typically divided into point and linear ones, the
latter including steps, surface dislocations and scratches.
Even an ideal substrate contains such defects as Tamm levels
due to the incompleteness of crystal planes. No rigorous
theory of heterogeneous new-phase nucleation on a surface
has yet been developed. The existing theories of new-phase
nucleation on solid surfaces proceed either from the classical
nucleation theory [5, 12] modified for the two-dimensional
case and allowing for the possible role of defects in
nucleation, or from the atomistic Walton ±Rodin model [29]
(see Section 2.5).

The surfaces of solid bodies can in the general case be both
crystalline and amorphous. The modern concepts [3] distin-
guish between atomically smooth and atomically rough
surfaces. The former usually include singular and vicinal
facets, while the latter include nonsingular ones. Singular
surfaces are characterized by a local minimum in the surface
tension s and a discontinuity in the angular derivative qs=qy
(here y is the angle in the polar diagram [3]). Such traits of s
and qs=qy behaviour are typical of all the directions described
by rational Miller indices, the minima being sharpest and
deepest in the directions normal to the close-packed planes
(with minimum Miller indices). Vicinal planes have a small
deviation from the alignment of close-packed facets [3].

In the vicinity of absolute zero temperature, a singular
surface is an ideal flat vapor-crystal interface. As the
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temperature increases, the role of the entropy term in the free
energy increases, and on such a surface equilibrium defects
occur, namely, adsorbed proper atoms (adatoms) and surface
vacancies [56]. According to the Landau theory [57] even at
T � 0 those surfaces that have a deviation from a close-
packed orientation must be steplike to provide a minimum
surface energy. In real crystals containing structure defects, it
is practically impossible to obtain sufficiently large singular
surfaces because surfaces possessing a macroscopically
singular orientation consist as a rule of microscopic domains
with orientations close to that of the singular surface. Such
step-containing vicinal forms are due to the intersection by
the surface of dislocations whose Burgers vector has a screw
component normal to the surface. Therefore, when consider-
ing atomically smooth surfaces one customarily means vicinal
surfaces possessing a certain density of steps aligned with the
crystallographic orientation of the surface. At T � 0, these
steps are practically straight, while at T > 0 they exhibit
ledges.

To describe the atomic structure of vicinal facets, the TLK
(terrace, ledge, kink) model [56] is most often used, which
allows obtaining the binding energy of atoms that are in
different positions. In terms of the TLK model one can
calculate both the number of ledges and the spacing between
them and can also determine the concentration of atoms in
each position, i.e. in atomically smooth regions of the surface,
on a step, in a ledge, etc. [56].

Cahn's [58], Jackson's [59], Temkin's [60] and some other
models [61] are commonly employed to calculate the para-
meters of a surface in a liquid ± crystal system. In particular,
the Jackson model implies that for q=kBT < 2, where q is the
latent heat of phase transition per particle, the phase interface
is atomically rough, while for q=kBT > 5 it is atomically
smooth. For 2 < q=kBT < 5, the crystal surface changes
from atomically smooth to atomically rough [3, 60]. The
growth mechanisms for each type of surfaces will be
considered in Section 2.6. The liquid ± crystal transition is a
first-order phase transition from the thermodynamic point of
view. Nevertheless, almost all the corresponding theories
treat the solid and liquid phases as a quasi-continuous state.
At the same time, the liquid ± crystal transition resembles in
many respects a second-order phase transition. The models
used in theories of this type are similar to those considered in
the theory of alloy ordering [62].

Thus, even ideal crystal surfaces having a slight deviation
from a close-packed orientation are steplike; at T > 0, the
steps are covered with ledges; the surfaces of real crystals are
rough, contain surface vacancies, surface dislocations, inter-
grain boundaries, and other defects [3, 63]. They all essentially
affect the parameters of the condensation and may serve as
orienting centres in epitaxial growth.

2.2 Adsorption, desorption and diffusion of adatoms
The adsorption, desorption and diffusion of atoms over the
surface of a substrate have been rather well investigated [3, 25,
64]. In particular, adsorption isotherms for different types of
surfaces have been drawn, microscopic theories of all basic
processes have been formulated, and the influence of
substrate occupancy by adatoms has been taken into
account. However, to describe the sufficiently slow processes
of thin-film condensation it is not at all necessary to use
detailed microscopic theories of fast processes such as
adsorption, desorption and diffusive jumps of adatoms to
neighbouring sites. It is quite enough to know the averaged

macroscopic behaviour of adsorbed particles. Below, we shall
therefore present only the simplest models of elementary
processes on the solid surfaces in terms of the transition
state theory [65]. A detailed description of fast processes can
be found in Refs [25, 64, 65].

Adsorption is typically thought of as the first stage of film
condensation [1 ± 9]. In condensation from a single-compo-
nent vapor, monomolecular and dissociative adsorptions are
most frequently distinguished [66] which, for small substrate
occupation numbers, lead to a uniform appearance of
adatoms about the entire unoccupied substrate surface with
a constant rate J:

J � CgP�2pMkBTv�ÿ1=2 ; �2:1�

where P is the vapor pressure, Tv is the vapor temperature,M
is the mass of one deposited molecule, kB is the Boltzmann
constant, and Cg is a geometric factor.

The adsorbed atoms can either desorb back into vapor or
jump over (diffuse) to one of the neighbouring sites [2, 3, 8]. In
the single-component case we distinguish between monomo-
lecular and associative desorption, which are respectively
described by the following equations

dn1
dt
� ÿ n1

tr
; tr � nÿ1 exp

Ea

kBT
; �2:2�

dn1
dt
� ÿDdn

2
1 ; Dd � Dd0 exp

�
ÿ Ea

kBT

�
; �2:3�

where n1 is the surface adatom concentration, t is the time
( dn1= dt is the desorption rate), tr is the characteristic time of
monomolecular desorption (reevaporation time), Dd is the
associative desorption coefficient with dimension of the
diffusion coefficient, Ea is the desorption activation energy,
and n and Dd0 are preexponential factors [66]. The mean
distance covered by a diffusing atom in a time t is

hx2i � 2Dat ; Da � Da0 exp

�
ÿ Ed

kBT

�
; �2:4�

where Da is the diffusion coefficient of adatoms, Ed is the
diffusion activation energy (it is commonly equal to Ea=3),
Da0 is a preexponential factor. The values of the activation
energy and preexponential factors for various systems can be
found, for example, in Ref. [66].

We shall now consider the kinetics of substrate surface
occupation by adatoms in the absence of thin-film growth, i.e.
for n1 < n1e, where n1e is the equilibrium concentration of
adatoms. For a constant rate J of arrival of adatoms at the
substrate and small substrate occupation numbers in the cases
of monomolecular and associative desorptions, we have
respectively

dn1
dt
� Jÿ n1

tr
; n1�0� � 0 ; �2:5�

dn1
dt
� JÿDdn

2
1 ; n1�0� � 0 : �2:6�

The solutions of these equations are as follows:

n1�t� � Jtr

�
1ÿ exp

�
ÿ t

tr

��
; �2:7�

n1�t� �
������
J

Dd

r
tanh�

���������
JDd

p
t� : �2:8�
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Unless otherwise specified, we shall further on consider for
simplicity only the case of monomolecular desorption, which
is more frequently encountered in practice.

2.3 Thermodynamics of an adsorbed layer
After establishing equilibrium between the surface and the
surrounding initial phase, a two-dimensional `gas' of adatoms
with surface density n1 is formed on the surface of the solid
body [5, 12]. In the case of monomolecular desorption, this
proceeds approximately within a time tr, and in the case of
associative desorption Ð within a time 1=

���������
JDd

p
[see Eqns

(2.7), (2.8)]. A large number of papers [27, 54, 64 ± 67] are
devoted to the study of the thermodynamic and kinetic
characteristics of such an adsorbed `gas'. The most interest-
ing and important for us are the thermodynamic stability,
instability and metastability of these systems because it is just
these characteristics that are directly connected with the
possibility of phase transformations in adsorbed layers.
With this purpose in mind, we shall consider the simplest
model. All adatoms are embedded at the sites in a two-
dimensional periodic lattice. Their density will be denoted
by n0 (the influence of steps and other inhomogeneities is
neglected). Next, we shall introduce the variable nj as follows:
nj � 1 if the site number j is occupied by an adatom, and
nj � 0 otherwise. Applying the substitution nj ! n�r�, where r
is the radius vector in the substrate plane, we shall pass over
from a discrete description to a continuous one. In this case,
nn0 is none other than the adatom concentration on the
substrate. Suppose also that the system is homogeneous and
isotropic. In the case of a monolayer adsorbate, this allows
the grand thermodynamic potential to be written as

O � n20
2

� �
U
ÿjr1 ÿ r2j

�
n�r1�n�r2� dr1 d r2 � n0ss

�
n�r� dr

ÿ kBT

�
lnWe drÿ mn0

�
n�r� dr� O0 ; �2:9�

where U is the potential energy of interaction between
adatoms in the substrate field, ss is the energy of interaction
between an adatom and the substrate, We is the number of
ways nn0 particles can be positioned at n0 sites, m is the
chemical potential of the two-dimensional gas, and O0 unites
all the contributions due to the remaining degrees of freedom.

Expression (2.9) can be simplified by passing over to the
variables �r1 � r2�=2 and r1 ÿ r2, and assuming the potential
U to be short-range and then evaluating the entropy
summand by the Stirling formula [54]:

O � n0kBT

� �
Tc

T

�
Rs

2

�2

�Hs�2 � E�s�
�
dr� O0 ; �2:10�

E�s� � 1

2

�
ÿ Tc

T
s2 � �1� s� ln�1� s�

� �1ÿ s� ln�1ÿ s� ÿ ls
�
; �2:11�

where s � 2nÿ 1 is the order parameter, and l �
�2kBTc ÿ ss � m�=kBT is the parameter of metastability with

kBTc � ÿ n0
4

�
U
ÿjrj� dr � ÿ pn0

2

�1
l0

rU�r� dr ; �2:12�

Rs � 1

2

���������������������������1
l0

r3U�r� dr�1
l0

rU�r� dr

vuut : �2:13�

Here Tc plays the role of the critical temperature [54], and Rs

is the scale factor. The minimization of O with respect to s�r�
allows determination of the critical configuration sc�r� which
is in equilibriumwith the initial phase [54]. The quantity l has
the meaning of the chemical potential difference, expressed in
kBT, between the new and the old phases.

We shall now briefly discuss the properties of the
potential (2.10), (2.11) and the consequent equation of
state of a two-dimensional adatom population. Let us
introduce the concept of the volume V occupied by a
substance of unit mass, V � 1=n. Then the pressure in the
adatom system is given by

P � ÿ
�
qF
qV

�
T

� n2
�
qF
qn

�
T

; �2:14�

where F�n� � kBT�n ln n� �1ÿ n� ln�1ÿ n��=nÿ 2kBTcn is
the free energy of the substance of unit mass. From this
follows the equation of state

P

kBTc
� T

Tc
ln

1

1ÿ n
ÿ 2n2 : �2:15�

For T < Tc, P < Pc � �ln 2ÿ 1=2�kBTc, the P�V� isotherms
contain a characteristic van der Waals loop testifying to a
first-order phase transition of gas ± liquid type. In real
systems such a transition occurs only in the interval
Tt < T < Tc between the triple and the critical points. Since
the potential (2.10), (2.11), being homogeneous and isotropic,
bears no information about the crystal structure of the new
phase, the given model (the same as other models of this type)
describes only the phase transition of gas ± liquid type
(amorphous state), i.e. the amorphous film condensation
and the first stage of the crystalline film condensation,
which proceeds by the vapor! liquid! crystal mechanism.
In spite of the simplifications made, this continual model
satisfactorily describes many principal features of the
behaviour of the adatom system.

We shall introduce new universal variables P 0 � P=Pc,
V 0 � V=Vc � 1=2n, and T 0 � T=Tc after which the equation
of states will not depend on the characteristics of the
substance:

P 0 � b0

2V 02
� b0T

0 ln
1

1ÿ 1=2V 0
; �2:16�

where b0 � �ln 2ÿ 1=2�ÿ1 � 5:177. The P 0�V 0� isotherms
are drawn in Fig. 1 for various T 0. Similar isotherms are
obtained for systems of solid discs, solid squares, and
particles on a lattice in simulations by the Monte-Carlo
and molecular dynamics methods using various interaction
potentials [68]. The Maxwell rule allows determination of
the equilibrium concentrations n1e�T� and n2e�T� between
which occurs the phase transition shown by the horizontal
straight line in Fig. 1. The application of the Maxwell rule
to the equation of state (2.15) or (2.16) gives the phase
equilibrium curve

T

Tc
� 2�1ÿ 2n�

ln�1=nÿ 1� : �2:17�

From Eqn (2.17) one finds the equilibrium concentration
n1e of adatom gas and the equilibrium density n2e of the
amorphous state. In particular, over the region T=Tc < 0:4
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the approximation holds [54]:

n1e�T� � exp

�
ÿ 2Tc

T

�
; �2:18�

n2e�T� � 1ÿ exp

�
ÿ 2Tc

T

�
: �2:19�

Comparison of Eqn (2.18) with experimental data gives the
estimate for Tc. For example, comparing the data of Refs [69,
70] with (2.18), we find Tc � 3600 K for Au/NaCl and
Tc � 4000 K for Au=KBr. The range of n values between
the points of maximum and minimum P is the region of
unstable states because in this case we have �qP=qV�T > 0.
The region n1s < n < n2s is called the spinodal region. The
initial state located in this region decays to n1e and n2e owing
to the increase of periodic fluctuation of substance concentra-
tion [32, 54]. The spinodal curve can be found from the
condition �qP=qV�T � 0:

T

Tc
� 4n�1ÿ n� ; �2:20�

which implies

n1s�T� � 1

2

�
1ÿ

������������
1ÿ T

Tc

s �
; �2:21�

n2s�T� � 1

2

�
1�

������������
1ÿ T

Tc

s �
: �2:22�

The phase-equilibrium and spinodal curves are plotted in
Fig. 2. The region of metastable states, n1e < n < n1s,
corresponds to a supersaturated vapor, and the region
n2s < n < n2e to a superheated liquid. It is precisely in the
region n1e < n < n1s that the film condensation proceeds
through nucleation, and for n � n1s the critical nucleus
consists of only one particle. The quantity
xmax � n1s=n1e ÿ 1 has the meaning of maximum attainable
supersaturation. For supersaturations exceeding xmax, the
adatom population becomes unstable and a spinodal decom-
position begins in it [32, 54]. Let us make very simple
estimations. For T=Tc � 1=4 we have n1e � 3:7� 10ÿ4,

n1s � 3:2� 10ÿ2 and xmax � 96, and for T=Tc � 1=10 Ð
n1e � 2:1� 10ÿ9, n1s � 2:6� 10ÿ2 and xmax � 1:2� 107.
Consequently, both the equilibrium adatom concentration
and the maximum supersaturation in a real temperature
range may change radically.

Concluding the section we note that in weakly metastable
systems with x5 xmax, the metastability parameter and
supersaturation are related as l � ln�x� 1�, where
x � n1=n1e ÿ 1 is supersaturation. In strongly metastable
systems, where x approaches xmax, this dependence is
violated [54].

2.4 Thin-film growth regimes
The thin-film growth regimes are typically divided into layer-
by-layer, island, and intermediate [1, 2, 8].

The layer-by-layer, or the Frank ± van der Merwe regime
is realized in the case when the atoms of a deposited substance
are bound with the substrate more strongly than with each
other. Monatomic layers in this regime are occupied in turn,
i.e. two-dimensional nuclei (one atom thick) of a subsequent
layer are formed on the upper part of the nuclei of the
preceding layer after the latter is occupied. The equilibrium
form of the nuclei is found by the Wulf theorem [3]. The
theoretical description of the layer-by-layer growth is
customarily given in the framework of the Kashchiev model
[71] or its modifications [72, 73].

The island, or Volmer ±Weber regime is realized in the
opposite case, i.e. for the atoms of a deposited substance
bound with each other more strongly than with the substrate.
Island growth can only be realized under the condition [8, 9]

ss < s d � ssÿ d ÿ const� kBT ln�x� 1� ; �2:23�
where ss is the free energy of a unit substrate surface, s d is the
free energy of a unit adsorbate surface, and ss�d is the free
energy of a unit substrate ± adsorbate interface. Otherwise the
layer-by-layer regime holds. In the island regime, small nuclei
are formed straight on the substrate surface and then grow
transforming into large islands of the condensed phase [8].
Thereupon these islands merge to form a continuous film
after the channels between them are filled [8, 74].

In the intermediate, or Stranski|̄ ±Krastanov regime, the
first to be realized is layer-by-layer growth and then, after one

0 0.5n1e n2en1s n2s 1.0

n

1.0

T=Tc

0.5

2 1

Figure 2.Phase-equilibrium curve (1) and spinodal curve (2) obtained from

Eqns (2.17) and (2.20), respectively. The values of n1e, n1s, n2s, and n2e are

given for T=Tc � 0:7.

0 51=2n1s 1=2n1e 10
V 0

1.5

P 0

1.0

0.5

1
2 3

Figure 1. Dependences of P 0 on V 0 for various T 0: 1 Ð T 0 � 0:7; 2 Ð

T 0 � 0:9; 3ÐT 0 � 1. The horizontal lines are drawn by theMaxwell rule.

Curve 1 shows the interval from the equilibrium concentration n1e to the

concentration n1s of a spinodal corresponding to a supersaturated gas of

adatoms.
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or two layers are occupied, island growth begins. There may
be several reasons for the change of the growth mechanisms
[8]. The principal cause is that the lattice parameter cannot
remain unchanged upon occupation of an immediate layer.
Its variation entails a strong increase of the adsorbate ±
intermediate layer interface energy, which provides fulfil-
ment of the island regime criterion (2.23). A large number of
examples illustrating all three thin-film growth conditions
and experimental methods of their investigation are presented
in reviews [2, 8].

In paper [75], it has been shown that under certain
conditions the faceting of cap-shaped clusters at the Ostwald
ripening stage may lead to a replacement of the island
mechanism by the layer-by-layer one. In this regime, condi-
tion (2.23) holds at first and then the change in the condensate
symmetry causes its violation.

Thus, the material of the substrate and the type of its
surface determine the film growth regime.

2.5. The nucleation processes
We shall briefly discuss the methods used to describe the
nucleation processes on the surface in the cases of single- and
multicomponent films. The most widely employed is the so-
called capillary model first formulated by Volmer andWeber,
Becker and DoÈ ring [18, 19], and Zel'dovich [28]. This model
postulates the following. Positive free-energy êuctuations
that lead to overcoming the activation barrier are necessary
for the condensation of a new phase from a supersaturated
vapor in the metastable state (i.e. over the region
n1e < n1 < n1s) [20, 28]. The presence of such a barrier is
connectedwith the fact that the free energy of nucleation from
a supersaturated vapor has a maximum at a certain critical
point.

Nuclei on a substrate may have various shapes [1, 2, 7 ± 9]
but theoretically they are most frequently assumed to look
like a disc or a hemisphere according to the film growth
mechanism [12], because many films grow by the vapor! li-
quid! crystal mechanism. The free energyF of the formation
of disc-shaped clusters on an ideal substrate, found in Ref.
[12], can be written in the form

F�i� � 2
����
ai
p
ÿ i ln�x� 1� ÿ ln

n0
n1
: �2:24�

Here i is the number of particles in a nucleus,
a � �s=kBT�2pw=h, s is the effective interphase energy per
unit length of the disc boundary, h is the disc height, w is the
volume occupied by one particle in the nucleus, and F is
expressed in kBT units. The first term in Eqn (2.24) is the
energy of the surface tension, the second is the chemical
potential difference between the new and the old phases, and
the third is a statistical correction due to the distribution of n1
atoms over n0 lattice sites [12]. The maximum of the free
energy (2.24) is positioned at the point

ic � a

ln2�x� 1� ; �2:25�

and is equal to

F�ic� � a

ln�x� 1� ÿ ln
n0
n1
: �2:26�

The nucleus has to overcome just such a potential barrier of
height H�x� � F�ic� owing to heterophase fluctuations in
order that it might grow further regularly.

According to the capillary model, an elementary act
changing the nucleus size is either an attachment to it or, on
the contrary, a loss of one molecule (the merging of nuclei is
ignored). As regards sufficiently large nuclei containing i4 1
particles, this change is small, and therefore the evolution of
large nuclei is described by the Fokker ± Planck equation [20]

qg
qt
� ÿ qI

qi
; I � ÿW�i�

�
qg
qi
� g

dF�i�
di

�
; �2:27�

where g�i; t� is the distribution function of nuclei over the
number of particles i in them, I is the nucleation rate (it
vanishes for an equilibrium distribution
ge � const� exp�ÿF�i��), and W�i� is the diffusion coeffi-
cient in the dimension space, which is equal to the number of
molecules coming into the nucleus from the ensemble of
adatoms per unit time. The stationary solution of this
equation has the form [28]

gs�i� � I exp
�ÿ F�i�� �1

i

Wÿ1�i 0� expF�i 0� di 0 �2:28�

(the standard boundary condition: gs expF�i� ! 0 as i!1
was taken into account here). The probability of fluctuations
described by the second derivative of g with respect to i in
(2.28) increases rapidly with decreasing size. Hence, the store
of subcritical nuclei may be regarded as supplemented so
rapidly owing to the fluctuations that their number remains in
equilibrium in spite of the permanent outflow of the flux I.
Consequently, the boundary condition to Eqn (2.27) takes the
form: gs�i� ! n1 exp�ÿF�i�� as i! 0, and therefore from
(2.28) we find

I � n1

� �1
0

Wÿ1�i 0� expF�i 0� di 0
�ÿ1

: �2:29�

The integrand in (2.29) has a sharp maximum at the point
i � ic, which allows us to calculate the integral using the
Laplace method:

I � n1

�����������������
ÿF 00�ic�

2p

r
W�ic� exp

�ÿ F�ic�
�
: �2:30�

The square root in (2.30) is sometimes called a nonequili-
brium Zel'dovich factor. Let us estimate the quantity W�ic�,
which is the frequency with which adatoms are attached to a
critical nucleus. To this end we shall use the lattice model. Let
Rc be the radius of the critical nucleus linear boundary, l0 the
length of diffusive jumps of adatoms, n the desorption
frequency, and E d the activation energy of surface diffusion.
Then we have

W�ic� � 2pRcn1l0
n d
4
exp

�
ÿ Ed

kBT

�
� 2 pRcn1

Da

l0
;

�2:31�

where Da � �l 20 nd=4� exp�ÿEd=kBT� is the diffusion coeffi-
cient of adatoms. From this, for disk-shaped nuclei we arrive
at [5]

I�x� � C1n1en0Da�x� 1� ln1=2�x� 1� exp
�
ÿ a

ln�x� 1�
�
:

�2:32�
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Similarly, for nuclei in the shape of a hemisphere we have

I�x� � C2n1en0Da�x� 1� ln�x� 1� exp
�
ÿ b

ln2�x� 1�

�
:

�2:33�

Here C1��2w=hl 20 �1=2, C2�2 sin y� ���������������3=2�pp
l 30 �1ÿ cos y�2�

�2� cos y�=w�ÿ1=3bÿ1=2, b � 4p�e=kBT�3w3�2� cos y��
�1ÿ cos y�2=3, e is the interphase energy per unit area, and y
is the contact angle. The time ts of setup of a stationary
nucleation rate has been repeatedly evaluated by various
authors, all the values being coincident in the order of
magnitude [76 ± 79]. The mean value is as follows:

ts � 1

ÿF 00�ic�W�ic� : �2:34�

In thin-film condensation, this time is usually very short
(10ÿ4 ± 10ÿ8 s) both for disc- and cap-shaped nuclei, and
therefore in practice it suffices only to calculate the stationary
flow of nuclei I. The method of making allowance for
nonstationary effects (necessary for the description of very
fast processes) was proposed, for example, in Refs [78, 79].

In the case of multicomponent films, the free energy of a
nucleus depends on the number of particles of each compo-
nent. Its calculation is a separate, fairly complicated problem
[80]. The Fokker ± Planck equation becomes multidimen-
sional, and accordingly the boundary condition at the zero
point becomes more complicated. The method of its solution
is based on the simultaneous diagonalization of both the
equation and the boundary condition by way of a linear
change of variables [81]. Then it turns out that the nucleation
rate I can be estimated in the order of magnitude as

I � n0

�Xm
k�1

dk

�
exp�ÿH0� ; �2:35�

where dk are the diffusion coefficients for each of the m
components in the dimension space for i � ic [80], and
H0 � H� ln�n0=

Pm
k�1 n1k� is the nucleation barrier height

without the entropy correction.
It has been assumed above that the nucleation proceeds

on an ideal substrate, namely, in a homogeneous way.
However, various substrate defects very frequently initiate
nucleation by reducing the activation barrier height H. In
particular, the work of heterogeneous nucleation at the step
of a substrate has recently been found inRef. [12], where it has
also been shown that steps may substantially increase the
nucleation rate. This is confirmed by numerous experimental
data [1, 2, 7, 8, 10]. The activation barrier of nucleation on a
step can be so small (� kBT) that a nucleus consisting of two
particles will already be supercritical, i.e. F�2� < F�1� (or
n1 > n1s). In this case, as has already been mentioned, a new
phase will be formed not through conventional nucleation,
but through a spinodal decomposition, namely, an increase of
the periodic fluctuations of substance concentration [32, 54].
At the same time, the size distribution of new-phase islands on
the step and their spatial distribution will already be different.

There exist many modifications of the classical capillary
model of nucleation on a substrate, in which various
corrections to the height of the activation barrier are
calculated, in particular, the correction due to internal
degrees of freedom of a cluster [20], the correction due to
free energy variation upon separation of a group of i

molecules from a large ensemble [12], the correction due to
cluster boundary smearing (see Ref. [82]), corrections due to
cluster faceting [3] and diffusion field fluctuations [83], due to
merging of migrating nuclei, electrostatic and nonisothermal
effects [84], and so on. These corrections are, as a rule,
relatively small and, moreover, have different signs. The
most significant is obviously the correction due to the
influence of nucleus surface curvature upon the interphase
energy [85, 86]. It leads to a 102 ± 106-fold increase of the
nucleation rate.

We recall that the capillary model described above is only
applicable for ic 4 1, because it is only in this case that the
attachment and detachment of particles to and from critical
nuclei can be described by the differential Fokker ± Planck
equation (2.27). An alternative to this model for ic < 10 is the
atomistic Walton model [29] exploiting the methods of
equilibrium statistical mechanics. It allows I to be expressed
in terms of ic, but does not give the dependence of ic on x.
Moreover, it is invalid for ic � 1 and ic � 2, when the increase
of long-wave density fluctuations is appreciable.

The equation for the rate of first-order phase transition in
melts was obtained in the model [87] intended for the
description of film growth from melt. The derivation of this
equation (but not the equation itself) differs from the
conventional Zel'dovich approach in that the model at hand
uses the relations between the atomic emission and absorp-
tion probabilities defined in advance and not the equilibrium
distribution function for subcritical nuclei. The flows of the
viable nuclei of a new phase were evaluated for several cases
not previously investigated.

From what has been said it is clear that the models for
calculating the quasi-stationary nucleation rate are fairly
numerous, and it is only on the basis of the corresponding
analysis of experimental conditions that a particular model
can be chosen.

2.6. Growth mechanisms of new-phase nuclei
After the appearance of nuclei of a new phase on the substrate
surface they start growing and interacting with atoms of the
old phase of which they were formed. This latter phasemay be
a single- or multicomponent vapor, a single- or multicompo-
nent solution-melt, an amorphous phase, a solid solution, etc.
[17]. Accordingly, the island growth mechanisms also differ
substantially. Thus, the diffusion flux of atoms of the old
phase towards the surface of the nuclei is responsible for their
growth from vapor medium. Both the removal of the latent
heat of phase transformations and the diffusion of atoms of
the old phase are responsible for the island growth from
solutions-melts and from an amorphous medium. If the film
growth is due to decomposition of a supersaturated solid
solution, the islands will grow through the presence of a
diffusion flux of atoms of the old phase. In case the film
growth proceeds in the course of another type of phase
transformation, for instance, a film decay caused by elastic
strains [88, 89] occurring at film ± substrate interfaces, the
islands grow owing to the diffusion atomic flux induced by
elastic strains. The surface introduces an appreciable diversity
into the nucleus growth mechanisms compared to the growth
in the bulk of solids [90, 91]. According to contemporary
concepts [17], the following basic ways of atomic migration
and energy, in particular, heat transfer over the surface are
distinguished: three-dimensional or volume diffusion of
atoms and three-dimensional heat removal; two-dimensional
atomic diffusion over the substrate surface and two-dimen-
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sional heat removal; one-dimensional atomic diffusion along
substrate steps, surface dislocations and other linear defects.
Islandsmay also grow owing to an immediate arrival of atoms
from a vapor onto their surface. The ultimate goal of the
study of island growth mechanisms is the determination of
their growth rate as a function of their radius and the degree
of supersaturation.With this purpose, the corresponding heat
and mass transfer equations are solved [17, 92 ± 94]. Such
problems are typically referred to as Stefan problems [3, 17,
61, 62]. They have been widely examined for three-dimen-
sional systems [66], in particular, for crystal growth from
single-component and binary melts. Similar calculations for
the diffusion mechanism of island growth on surfaces have
been made by Sigsbee [95], Chakraverty [96] and others [2,
15]. But the authors of these papers have analyzed only one of
the possible mechanisms of island growth, namely, island
growth due to surface diffusion of adatoms. It has also turned
out that the island growth rate is notably governed by
nonstationary effects induced by the nucleus boundary
motion [97]. These effects become predominant for small
values ofR=

����������
Datr
p

, whereR is the island radius, and
����������
Datr
p

is
the diffusion path length of adatoms. Below we shall only
consider the quasi-stationary approximation for the island
growth rate, which holds for high values of R=

����������
Datr
p

.
The structure of diffusion fields in the bulk of a vapor

phase, on a substrate surface, and at linear defects was
investigated in detail and the expressions for the island
growth rate vR were found in Refs [17, 88, 98]. Islands
usually grow simultaneously through several atomic diffu-
sion mechanisms. It is however more convenient to consider
each mechanism of island growth separately. According to
Refs [93, 94], the expression for the new-phase island growth
rate vR can bewritten in the following general form for each of
the mass transfer mechanisms:

vR � ÿM2ÿd 0w
JDRC�y�
R3ÿd 0 : �2:36�

Herew is the volume per atom in the islands of a new phase; d 0

is the dimension of the space in which the diffusion fluxes
propagate: d 0 � 3 for mass transfer in the bulk of a phase,
d 0 � 2 for mass transfer over the surface, and d 0 � 1 for one-
dimensional atomic diffusion along substrate steps or other
linear defects (in this formula 2ÿ d 0 is assumed to take only
nonnegative values); JDR is a diffusion flux of atoms onto the
island surface, which is found from the corresponding
diffusion equations (for more details see Refs [17, 93]), and
C�y� is the function taking into account the island geometry.
For caplike islandswe haveC�y��2�2ÿ 3 cos y� cos3 y�ÿ1�
�1ÿ cos y� when the diffusion of atoms proceeds in the bulk
of a gas phase, C�y� � 2 sin y=�2ÿ 3 cos y� cos3 y� for the
diffusion of atoms over the substrate surface, and
C�y� � �2p�2ÿ 3 cos y� cos3 y��ÿ1 for the one-dimensional
atomic diffusion, and, finally, M is the number showing how
many linear defects are crossed by an island during its growth.
To find the atomic diffusion flux of atoms JDR to a nucleus,
one has to solve the corresponding diffusion equations. The
form of these equations, the boundary conditions on them
and the methods of their solution can be found in Refs [5, 17,
92, 93]. The general expression for the new-phase island
growth rate has the form

vR � Kp

Rpÿ1

�
R

Rc
ÿ 1

�
: �2:37�

Here Kp is a constant involving the parameters which
characterize the material of the island and the kinetic
parameters of its growth (particular values of Kp in different
cases can be found in Refs [5, 11, 17, 92]), and the number p
assumes the values 2, 3, 4 depending on the mass transfer
mechanism. For our further purposes it is convenient to
express the number p in terms of the island dimension
d � 2; 3 and the growth index m, which takes the values 1, 3/
2, 2, 3 depending on the island shape and the type of the
limiting stage: p � d=m� 1. At the initial stages of phase
transformation, the island radius isR4Rc, and therefore the
unity in the right-hand side of Eqn (2.37) is customarily
ignored as being negligibly small compared to R=Rc.
Furthermore, it is convenient to write this equation not in
terms of the radius growth rate but via the change of the
number of atoms in the nucleus. Then Eqn (2.37) will be
rewritten in the form [5, 11]

di

dt
� m

x
t0
i �mÿ1�=m ; �2:38�

where x is supersaturation, and t0 is a constant having the
dimension of time and called the characteristic time of island
growth. It is expressed through the constant Kp and the
constants relating supersaturation to the critical radius [55].

It has been shown theoretically and experimentally [17,
88] that the new-phase island growth is determined by two
principal processes Ð substance transfer to the island, i.e.
diffusion proper, and the passage of atoms through the old
phase ± new phase interface, i.e. the boundary kinetics. We
note that the necessity of allowing for the boundary kinetics
during nucleus growth was discussed in a number of
theoretical papers [88, 99], where island growth controlled
not only by the diffusion rate but also by the velocity of
passage of atoms through the boundary between the diffusion
source and the island was considered. Island growth control
using boundary kinetics was convincingly demonstrated in a
number of experiments, the results of which were summarized
in the monograph [88]. It was shown, in particular, that
between an island and an adatom vapor there may exist a
potential barrier preventing the passage of the atoms in only
one direction, namely, toward the island [100].

Having passed through the phase interface, an atom joins
the island surface. The island surface, the same as the surface
of any crystal (see Section 2.1), can be atomically rough,
atomically smooth or vicinal. The ways in which the atom
joins the island surface are different and depend on the type of
surface [17]. So, phase interfaces rough at the atomic level
grow by the normal mechanism of growth. Atomically
smooth surfaces grow by way of two-dimensional nucleation
on their facets. Vicinal surfaces grow either through the
motion of already existing steps or through the use of screw
dislocations appearing on their surfaces. Island growth by the
two-dimensional nucleation, as well as the evolution of an
ensemble of such islands was described in the paper [101]. In
Refs [17, 75], a rigorous analysis of island growth due to the
motion of dislocations over their surfaces was carried out and
the conditions under which this growth mechanism is
realized, were found.

The next stage represents incorporation of adatoms into a
new-phase island. The growth rate (2.37), namely the
constant Kp and the index p, are significantly influenced by
which of the processes is limiting. For the particular form of
the constantKp for each type ofmass transfermechanism, see,
for example, Refs [5, 11, 17].
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We shall now consider peculiarities of growth of the
multicomponent islands. Multicomponent systems may be
divided into two groups. One of them includes systems with
solid solutions as islands [17, 102, 103], and the other involves
systems with islands consisting of stoichiometric compounds
[5, 90 ± 94, 98]. We shall first dwell on the growth of
multicomponent stoichiometric islands and then pass over
to an examination of growth processes in islands of solid
solutions.

In the course of formation of multicomponent thin films,
atoms arrive at the substrate surface and they may initiate
islands of various chemical compounds. For example, during
growth of high-temperature superconducting films, islands of
Y2O3, BaO, and CuO compounds appear [104]. Many of the
islands of these compounds represent an intermediate phase
in the course of growth of other phases. Islands of a chemical
compound will further on be referred to as the phase s. As in
single-component systems, the growth of multicomponent
islands is due to the same mass transfer mechanisms [17, 92,
93]. However, there is one important difference in that the
chemical components of which an island of phase s is formed,
may diffuse towards it in different ways. One of the
components may arrive at the island surface through surface
diffusion, and another through gas diffusion. Furthermore,
these components may have different limiting stages. In this
situation one usually has to find the component responsible
for the limitation and by this component determine the main
flow of substance towards the island. The growth rate of a
multicomponent island of an arbitrary phase s will as before
be described by Eqn (2.36) in which, however, instead of the
product of the atomic flux JDR by the volume w there stands
the sum of the products of an atomic flux from each
component by their volume wi, i.e.

Pns

i�1 w
s
i J

s
iR, where the

subscript i stands for the corresponding sort of atoms. Since
the islands have a stoichiometric composition, it follows that
on their surfaces, according to Refs [5, 11, 17, 90 ± 93], the
stoichiometry condition J s

iRr=n
s
i � Jsi 0Rr=n

s
i 0 holds. This condi-

tion allows us to express the quantity
Pns

i�1 w
s
i J

s
iR in terms of

the product of the flux of one of the components i by the
volume ws

m of a molecule of the chemical compound of phase
s, i.e. J s

iRw
s
m=p

s
i , where ws

m �
Pns

i�1 p
s
iw

s
i is the volume per

molecule of phase s, and psi � nsi=
Pns

i�1 n
s
i . Thus, to calculate

the growth rate of a multicomponent island, it suffices to find
the flux J s

iR of only one arbitrary component. In Refs [92, 98],

all possible mechanisms of substance transport in multi-
component systems were investigated and analytical expres-
sions for any type fluxes J s

iR were found. Their substitution
into an equation of growth rate of the type (2.36) leads to an
equation of motion for an island of phase s, which has the
form (2.37), where the constantKp is replaced by a generalized
constant containing kinetic and some other coefficients of
each component entering the phase s [17]. The critical radius
Rc in Eqn (2.37) is replaced by the critical radiusR

s
c for a given

phase.
The exact calculation of the growth rate of solid solution

islands is much more sophisticated than that for stoichio-
metric compounds. If the diffusion processes inside the islands
are slowed down compared to the same processes outside the
islands, the island composition along their radii will be
inhomogeneous. Only provided the diffusion rate inside the
islands appreciably exceeds the rate of variation of their
radius, the island composition may be thought of as homo-
geneous. Todetermine the island growth rate, it is necessary to
know in what proportion the components are built-in in an
island. This question can only be answered after the mixing
entropy of the components is calculated [80]. The solution of
this problem can be approached differently, namely, one may
use the state diagram relating the composition of the old and
the new phases [17, 102, 103, 105]. Solid solution islands are
formed as a rule from the vapor phase and melts. Any state
diagrams of substances in which there are no chemical
interactions can be represented in the form of one or other
modification of the two simplest state diagrams, namely, the
diagram describing melting ± crystallization of substances
insoluble in each other when in solid state (Fig. 3a Ð the
diagram with an eutectic point) and the diagram describing
melting ± crystallization (evaporation-condensation) of sub-
stances that form a continuous solid-solution series (Fig. 3b)
[106]. Islands produced from systems of the first type are
single-component substances of composition A or B, respec-
tively. At a eutectic point (see Fig. 3b), there simultaneously
appear islands of bothAandB compositions. InRefs [17, 102,
103], it was shown that whenever the volume diffusion in the
island matrix was fast enough, the expression for the growth
rate remained the same (2.36), but the flux JDR already
consisted of the difference of atomic fluxes of components A
and B. The average composition of islands changed during
their growth by a definite law (see Section 4.6).

T

T0

T�0�

A rs0rl0 rs�0�rl�0� B

bT

T0

T�0�

A re rl0 rl�0� B

Â

Figure 3. State diagrams of binary systems: (a) system with a eutectic point; (b) system with infinite component solubility in the solid phase; rs and rl are
equilibrium concentrations in the solid and liquid phases, respectively; T0 is an equilibrium temperature, T�0� and r�0� are respectively the temperature

and the composition at the onset of island growth.
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The examination of island growth from single-component
melts has shown that the principal mechanisms of island
growth are as follows: three-dimensional heat removal into
the melt, three-dimensional heat removal into the substrate,
and two-dimensional heat removal from the nucleus along the
substrate. The limiting stages in this process are the thermal
conductivity proper and the mechanism of atomic incorpora-
tion into an island, which depends on the crystalline structure
of its surface. The general expression for the island growth
rate for each heat transfer mechanism takes the form

vR � w
JTRC�y�
qR3ÿd 0 ; �2:39�

where q is the latent heat of phase transition per atom.
Concrete expressions for the heat flows and the island
growth rates can be found in Refs [17, 107 ± 109].

If the islands grow from multicomponent melts, their
growth rate is determined by the intensity of substance
supply and the intensity of heat removal from their surface.
In this case the substance and the heat can be supplied and
removed through absolutely different channels. All these
possibilities are analyzed in Ref. [17], where the expressions
for the growth rates and the flows are also presented. Several
fundamental mechanisms of island growth are sketched in
Fig. 4.

At the eutectic point, islands of compositions A and B
simultaneously precipitate. In the series of works [17, 103,
110, 111] it was established that the growth of nuclei of
eutectic composition depends on the sum of supersaturations
over all the components. As a result, in a eutectic melt an
identical critical radius of the nuclei forms, determined by the
supersaturation in both components. In paper [111], we
described the properties of a diffusion `dipole', i.e. a diphase
object located in a melt or in a solid solution of eutectic
composition, in which two nuclei of distinct compositions are
united by a common diffusion field.

Thus, the mechanism of island growth defines its rate vR
which enters the main equations of film condensation kinetics
and hence ultimately determines the structure and composi-
tion of the growing film, as will be shown below.

2.7. Morphological stability
The main problem of the theory of morphological stability is
to find out whether a given particular form of a vapor-,
solution-, or melt-grown island is stable under small distor-
tions. The analysis of stability is carried out by the following
scheme: one assumes the shape of an island or a crystal to be
slightly distorted, and then finds out whether this distortion
increases or disappears. The necessity of examining stability
stems from the fact that crystals often grow in the form of
dendrites. Dendrites, or treelike crystals consist of a central
trunk and primary, secondary, etc. branches off. They are
often observed in nature and in laboratory conditions in melt
crystallization. A quantitative analysis of the stability of the
form of the growing crystal was first carried out in the classic
paper byMullins and Sekerka [112]. Before the appearance of
this paper, the crystal had been assumed to preserve its shape
as a whole during growth. Later, Lyubov, Cahn, Cornell,
Parker and many other researchers [3, 5, 61 ± 63] were
engaged in these studies.

Numerous experiments on film growth show that the form
of nuclei on the surface changes as they grow. It either
becomes edged or, on the contrary, unstable or dendritelike

[61, 62, 113]. This fact significantly influences both the
nucleation and the Ostwald ripening and, accordingly, the
structure of continuous films. The growth of islands on the
surface from vapor medium differs noticeably from the melt
growth of three-dimensional crystals. This is first of all
associated with the fact that deposited atoms are perma-
nently supplied to the substrate surface and, having a finite
lifetime (see Section 2.2), leave the surface by evaporating.
This introduces essential changes and thus has a crucial effect
upon the physics of the process.

In line with Ref. [114] we shall discuss the following
particularly simple model. Let us assume the shape of a flat
island of height h, growing on a substrate as the result of
adatom diffusion, to differ only slightly from the shape of a
disc of height h and radius R0. Then the equation for the
island surface in polar coordinates (with the origin at the
island centre) will have the form

R�j� � R0

�
1�

X1
n�0

en cos nj
�
; �2:40�

where en 5 1 are the coefficients of the expansion in cosines of
the island shape deviation from a disc, and j is the polar
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Figure 4. Schematic diagram of the fundamental mechanisms of island
drowth: (a) growth of edged and unedged islands, when the limiting stage
is the surface diffusion of adatoms; (b) limiting process ì the diffusion of
atoms in the vapor phase or evaporation-condensation; (c) the growth of
unedged islands, when the process is controlled by the entry of atoms from
the vapor phase, but the heat removal occurs over all their surfaces; (d) the
same, but with the heat removal through the substrate only; (e) the growth
of islands through linear diffusion along the steps of the substrate: 1 ì
substrate, 2 ì unedged island, 3 ì edged island, to the surface of which
atoms join only in speciéc places, 4ì the island at a substrate step, 5, 6, 7,
8 ì the Âtom in the vapor phase, on the substrate surface, on an island
surface, and at a substrate step, respectively, 9ì heat êows.
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angle. A change of the quantities en with time means a change
in the island shape during its growth. The change of the shape
is induced by a competition of two forces. On the one hand, a
ledge on the island surface appears to be in the region of
higher concentration gradients of adatoms and must, there-
fore, increase in size. On the other hand, a ledge increases the
curvature and thus raises the saturated vapor density at this
point, which in turn slows down the growth rate of the ledge
compared to the neighbouring points of the nucleus bound-
ary. The analysis of the corresponding diffusion equation
[114] has shown that for sufficiently large islands and a small
critical radius Rc the equation

den
dt
� w

����������
Datr
p
hR0

�
Jÿ n1e

tr

��
1ÿ R1

R0

��
R2

R0
ÿ 1

�
en �2:41�

holds, where R1 and R2 are parameters depending on the
number of the mode n. If Rc=

����������
Datr
p

51, then R1�n��Rc,
R2�n����n2ÿ1�=2�

����������
Datr
p

. For each n5 2, the modes with
corresponding numbers increase only in the interval
R1�n� < R0 < R2�n� and reach a maximum value emax

n for
R0 � R2 [114]. The description of the island form evolution
and the allowance for additional effects are presented in Ref.
[114].

The analysis of the morphological stability of nuclei
growing from eutectic melts [111] has shown that the
perturbations occurring in the system may cause a change in
the nucleus shape if its radiusR > 25Rc (Rc is a double critical
radius of the eutectic system). The perturbed modes here can
be represented in the form of Legendre polynomials Pn�cos y�
with odd n. The first to excite is the mode with n � 3, then the
one with n � 5, and so on. It turns out that during nucleus
growth from eutectic melts the mode with n � 3 dominates,
which induces a change in the nucleus shape in the direction
perpendicular to its axis. The nuclei then elongate to form
strips, flakes or needles. Their lateral branches are typical of
nucleus growth from melts of pre-eutectic and post-eutectic
compositions.

An interesting parallel between the growth of dendrites
and the formation of brittle cracks in an elastic medium (in
particular, in a thin film) was revealed in Ref. [115]. At the
initial stage of cracking, a brittle material exhibits microcav-
ities (pores) due to expansion and compression stresses, which
is analogous to the new-phase nucleation. The cracks
themselves result from morphological instability of the form
of these microcavities. Viewed like this, a crack is analogous
to a crystalline dendrite occurring in a supercooled melt. The
critical stresses for which cracking is possible and the
geometry of cracking were obtained in the course of a
rigorous analysis of morphological instability [115].

2.8 The surface migration of islands
Numerous experimental studies demonstrate that at the
initial stages of crystal film condensation on foreign crystal-
line substrates the nuclei of a new phase can rather rapidly
transfer over the substrate surface [4, 116, 117]. This process
serves as an important link in the film structure formation [1 ±
3]. Such migrations proceed under the action of various
external forces: collisions with fast particles of the flow, the
temperature gradient, the electric and magnetic fields, the
entrainment bymoving steps, etc. As concerns themechanism
of island migration, only two basic models describing the
island transfer have been used up to now [4]. In the first,
particle diffusion proceeds only across the island surface, and

particles attached to the boundary surface remain immobile
about it. In the second, an island is assumed to slide over the
substrate surface. Many concrete mechanisms of the mor-
phological change of the island and of the sliding process have
been proposed, but all of them yield relatively low values for
the migration velocity and the diffusion coefficient compared
to those actually observed in some cases [116, 117]. In the
models of first type this is associatedwith the low values of the
coefficients of self-diffusion of adatomswhich cannot provide
sufficiently fast islandmigration. Inmodels of the second type
this is caused by the high values of the sliding friction forces
between the island and the substrate (i.e. the high activation
energy of slide) particularly during epitaxial growth. We have
recently proposed [118] an essentially different model of
transfer of orientedly growing islands over a foreign sub-
strate. As is well known, under certain conditions mismatch
dislocations are generated on the island ± substrate interface
[119]. If the Burgers vector lies in the slip plane, the motion of
the island can be provided by the motion of these dislocations
(solitons) [118]. Such a mechanism looks preferable to the
usual sliding because during the motion of the dislocation at
every instant of time almost all the atoms of the island remain
immobile with respect to the substrate, and it is only a very
small group of atoms that move. The passage of a dislocation
(compression or rarefaction waves) from one end of an island
to the other is equivalent to island displacement by one lattice
constant of the substrate [118, 120]. If the dislocation (soliton)
velocity is much smaller than the velocity of sound in the
material of the film, then the energy losses during its motion
are very small, i.e. in such displacement of an island there is
almost no friction against the substrate. The estimate of the
`effective' mass of an island migrating over a substrate owing
to soliton motion takes the form [118]

Meff � 4cM ln
1

Eÿ Ec
; �2:42�

whereM is the islandmass, c is the ratio of forces acting on an
atom from the side of other atoms of the island to those from
the side of the substrate, E is the parameter of lattice mismatch
between the film and substrate, and Ec is the critical lattice
mismatch parameter corresponding to the onset of generating
mismatch dislocations [118].

3. Kinetics of thin-film condensation
at the initial stage

Among the whole variety of processes accompanying thin
film growth, the principal one is undoubtedly the new-phase
nucleation in islands, i.e. the first-order phase transition
proper. It is at this initial stage of condensation that the
number of islands of a new phase is determined and the bases
of thin-film structure formation are laid.

3.1. Condensation theories for low supersaturations
The description of the real kinetics of new-phase nucleation
and the occupation of a condensation surface by the nuclei is
one of the most important problems of the theory of first-
order surface phase transitions. A large number of papers of
both classical and nonclassical direction have been devoted to
this issue [7, 8, 30, 31, 55, 121 ± 128]. The corner stone of any
theory is a correct account of the nonlinear feedback between
supersaturation and the size distribution function of new-
phase islands. Indeed, growing islands absorb adatoms and
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thus diminish the supersaturation which is responsible for the
nucleation rate and the growth rate of the islands, i.e.
ultimately for the distribution function [55].

One of the first models describing film condensation
kinetics was posed by Zinsmeister [31]. He was the first to
investigate the influence of a supersaturation decrease due to
cluster growth upon the nucleation kinetics. Thismodel has at
least three shortcomings. First, the cluster growth rate is
thought of as independent of cluster size. Second, the number
of particles in a critical nucleus is always assumed to be equal
to unity and not to increase with falling supersaturation (the
decay of all the clusters is ignored). Third, the nucleation rate
I is assumed to be equal to const� n21 over the entire
nucleation stage (the possibility of a spinodal decomposition
is neglected altogether). As a result, the island concentration
given by themodel is greatly overestimated and increases with
time without restriction. This model was further developed in
many papers where the decay of all the clusters was also
disregarded and it was assumed that I / n21 over the entire
film formation stage [1].

A whole number of papers have been devoted to the
calculation of the maximum surface cluster concentration
Nmax by the equation

I�Nmax� � Vcoal N
2
max ; �3:1�

where Vcoal is the rate of pair cluster coalescence (see Section
4.1) calculated from various geometric considerations [122],
and I depends in a certain way on Nmax through the
supersaturation x. Such models typically ignore the fact that
the limitation on the number of clusters is not only due to
coalescence, but largely due to the deterioration of super-
saturation and the associated abrupt decrease of the nuclea-
tion rate I.

An important step in the development of film condensa-
tion kinetics was the model of the rate equations [124]. It is
based on the division of all nuclei into subcritical and
supercritical and the use of averaged condensation character-
istics, such as the average number of particles in supercritical
nuclei, the average rate of particle trapping by supercritical
nuclei, the average radius of particles, etc. This model is
frequently employed in numerical computations [129], which
determine various characteristics of condensation. The short-
comings of the model [124] also include the absence of
analytical results, the absence of data on the size distribution
function of nuclei, as well as a forced assumption of an
identical rate of adatom consumption by growing clusters of
various sizes.

We should specially mention the nonstandard Kikuchi
model which represents the nucleation and thin film growth
as an irreducible cooperative process and exploits the so-
called path probability method [130]. Kikuchi deduces nine
probabilities of various processes, of which three are
independent. The variations in a system within the period of
time from t to t� Dt are determined using the so-called path
parameters, which are the probabilities of transitions of one
configuration of the system into another. The probability of
realizing a change of state determined by a set of path
parameters is called the path probability P. The change of
the macrostate corresponds to the most probable path
defined by the maximum P found from the path parameters
for fixed initial conditions. The search for the maximum P
leads to kinetic differential equations for three independent
probabilities, which bear information on the onset of film

formation and on film growth in the pair approximation. The
numerical solution of these equations was analyzed in Ref.
[130]. The method of path probabilities also determines the
equation of state for a system of adatoms on a lattice.

The microscopic theory [131] applies the methods of the
modified adsorption theory to the description of the earliest
stage of thin film growth. Within its framework one can
calculate the time variation of film roughness.

The cluster model [21] describes the nucleation, growth,
and coalescence of islands of a new phase using the
microscopic stochastic equations reformulated in terms of
`clusters'. `Clusters' are defined as independent fluctuations
of the local order parameter [21]. The division of all the
variables into `relevant' and `irrelevant' (`irrelevant' proper-
ties induce random transitions in `relevant' coordinates,
which are described by the Markov master equation) allows
simplification of the kinetic equation. This equation is
thoroughly examined in Ref. [21].

The stochastic models [132 ± 134] describe the film growth
by various approximate stochastic equations. The character-
istic feature of suchmodels is the scaling behaviour of various
parameters of a growing film, for instance, its roughness.

The ballistic model [135] represents nucleation as a
Poisson process and is intended to describe the structure ±
zone characteristics of a growing film.

The kinetic theory [55, 126] yields analytical expressions
for all the basic characteristics of film condensation at the
initial stage using specially developed methods for an
approximate account of the nonlinear feedback mentioned
above.

And finally, the continual model [54] represents thin film
condensation as the order-parameter field relaxation, the
surface adatom density being the order parameter in this
case. This approach is apparently the most general [136 ± 139]
because it allows a description of film deposition both in
terms of nucleation and spinodal decomposition, and for low
supersaturations it becomes a standard kinetic model.
Furthermore, there is an opinion that it is precisely this
approach that will allow us to describe the appearance of the
crystalline order during film growth from a vapor or melt.

3.2 Perturbation theory
The variety of approaches to the description of thin film
growth is largely due to the impossibility of an exact
analytical solution of the main system of equations of film
formation in the opening stage, i.e. the system consisting of
the equation of conservation of matter on the substrate and
the kinetic equation for the size distribution function of nuclei
(this system is derived using the division of the whole size axis
into three portions: subcritical, critical, and supercritical
[55]). Practically all the above-mentioned models apply
approximate methods for the solution of this system, which
are based on some small parameter of the theory. From the
physical point of view, the `principal' small parameter is the
inverse number of particles in a critical nucleus (at the
moment of maximal supersaturation). It is just this para-
meter that stands in the denominator of the nucleation rate
exponent. Expanding all the quantities in power series of the
small parameter directly, one obtains series that diverge for
sufficiently long times, i.e. not uniformly valid series. In order
to provide convergence of the series, it is necessary to use a
rigorous perturbation theory [140]. It should be noted that the
presence of a small parameter does not always allow the
solution to be represented in the form of a convergent series,
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i.e. it is not always possible to provide a uniform validity of
the series by way of a particular renormalization [140].
Therefore, it should be specially emphasized that the system
of equations governing kinetics of the first-order phase
transition in general and of thin film condensation in
particular admits an analytical solution in the form of a
power series of the small parameter [128]. The uniform
convergence of this series is provided by the time renormaliza-
tion procedure. We shall consider this technique in more
detail.

Let us represent the main system of equations of film
condensation kinetics in the following form [55, 141]:

x0
x�t� ÿ 1 � �k� 1�tr

n1et0

�1
0

rkg�r; t� dr ; �3:2�

qg
qt
� x�t�

t0

qg
qr
� 0 ; g�0; t� � I

ÿ
x�t��t0
x�t� ; g�r; 0� � 0 :

�3:3�

Here the term trx 0=x is ignored because of the smallness of tr
[55], x�0� is assumed to be equal to x0, t0 is the characteristic
cluster growth time involved in the law of growth of stable
islands (2.38), and g�r; t� is the size distribution function of
stable clusters r (r � i 1=�k�1�). The merging of the islands and
the Ostwald ripening are disregarded in (3.2) and (3.3). In the
capillary nucleation model the nucleation rate I�x� entering
(3.3) has the form [see (2.32), (2.33)]

I�x� � P�x� exp �ÿH�x�� ; �3:4�

where H is the nucleation barrier height, and P is the pre-
exponential factor depending on supersaturation. The most
important parameter G of the phenomenological theory is
connected with the functionH as follows [141]:

G � ÿx0
dH

dx

����
x�x0

: �3:5�

For films growing from vapor medium and high values of x0
we have G � ic 4 1, where ic is the number of particles in
critical nuclei for x � x0. Consequently, the quantity

e � 1

G
�3:6�

is the small parameter of the given problem.
To find the solution of the system (3.2) ± (3.4) in the form

of a power series in e, we shall introduce new dimensionless
variables

x � x0t=t0 ÿ r
e

; t � t

t0
ÿ eo1�t� ÿ e2o2�t� ÿ . . . �3:7�

and represent the functions x, g,H in the following way

x�t� � x0
�
1� ec1�t� � e2c2�t� � . . .

�ÿ1
; �3:8�

g�x; t��ÿegÿr�x; t�; t�t���ÿeg1�x; t� ÿ e2g2�x; t� ÿ . . . ;

�3:9�

H
ÿ
x�t�� � H�x0� � c1�t� ÿ e

�
Kc2

1�t� ÿ c2�t�
�� . . . ;

�3:10�

where

K � 1ÿ x20
G

d2H

dx2

����
x�x0

:

To avoid the appearance of secular terms, the expansion of x
in e is chosen in the form of series (3.8). According to the
rigorous perturbation theory [140], the functions o1, o2; . . .
participating in the time renormalization (3.7) should be
chosen so as to cancel the secular summands in the expansion
(3.9). Substituting (3.7) ± (3.10) into (3.2) ± (3.4) and equating
the coefficients of terms with equal powers of e, one can
readily obtain the equation describing the evolution of the
quantitiesc1, g1,c2, g2, etc. In particular, in the first order in e
we have

c1�t� �
�k� 1�trxk0

n1et0
tk
�b0�t�
ÿ1

g1�x; t� dx ; �3:11�
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qt
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ÿ
b0�t�; t

�� I�x0�t0
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�
;

g1�x; 0� � 0 : �3:12�

In the second-order approximation, the equation for g2 takes
the form

qg2
qt
� x0c1

qg2
qx
� x0c2

qg1
qx
ÿ �o01 ÿ c1�

qg1
qt
� 0 : �3:13�

The secular term �o01 ÿ c1�qg1=qt responsible for the diver-
gence can be eliminated by putting

o1�t� �
�t
0

c1�t0� dt0 : �3:14�

Repeating this procedure for the other powers of e, it is
easy to find o2, o3, etc., for example, one obtains

o2�t� �
�t
0

c2
2�t0�

c1�t0�
dt0 :

This provides convergence of the series for all t. Our further
calculations will be restricted to the first order in e. This
approximation suffices for many purposes because it is valid
over the entire time variation region. Obviously, the system of
equations (3.11), (3.12) is appreciably simpler than (3.2), (3.3)
and can be readily solved analytically. All the unknown
functions will be expressed here in terms of the auxiliary
function jk�x� specified by the equation

djk

dx
� exp�ÿxkjk� ; jk�0� � 0 : �3:15�

The dependence of jk on x is plotted in Fig. 5. We shall only
present the net result to the first approximation in powers of e
[128]:

x�t� � x0
1� �1=G�Tk�t�jk

ÿ
T�t�� ; �3:16�

I�t� � I�x0�
exp

�ÿ Tk�t�jk�T�t��
�

1� �1=G�Tk�t�jk�T�t��
; �3:17�

N�t� � I�x0�tkjk

ÿ
T�t�� ; �3:18�
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The time dependences of the nucleation rate and the size
distribution function of new-phase islands are illustrated in
Figs 6, 7. The results obtained agree well with those of the
phenomenological kinetic model [55] (with a distinction of the
order of 20%), but the present ones are asymptotically exact.
For example, in the framework of the phenomenological
theory, the denominator in expression (3.17) should be put
equal to unity because it yields much more weaker depen-
dence on t than the exponent ofH�x�t��. Nevertheless, within
the perturbation theory it is rigorously calculated because for
long times it changes the asymptotics of the function I�t�. The

quantities c1, g1, and o1 having been found, one can, in
principle, calculate c2, g2, o2, etc. The same method can be
used to describe the growth of multicomponent films as well
as inhomogeneity effects [128]. The shortcoming of the small
parameter technique is the impossibility of describing a phase
transition for arbitrary tr, G, and t0, which can only be done
numerically by solving the equations of condensation kinetics
(3.2), (3.3).

3.3 Film condensation upon high supersaturation
If the external source of deposited particles has a large power
such that a one-particle nucleus is energetically more
advantageous than a two-particle nucleus, i.e. F�2� > F�1�,
then in the ensemble of adatoms a spinodal decomposition
starts [21, 32, 54]. Any thermodynamic fluctuations increase
in this case, the long-wave fluctuations increasing faster. A
theory of spinodal decomposition in a system of adatoms was
formulated in Ref. [54].

If the external source of deposited particles has such a
power that in a metastable system it creates a supersaturation
x close to xmax, which corresponds to approximately
ic � 2ÿ 4, then the character of the nucleation process
radically changes. Firstly, the correlation radius in the
system may exceed the average cluster size (for ic � 1 the
correlation radius is equal to infinity). Secondly, the distribu-
tion of subcritical nuclei may be other than equilibrium, and,
thirdly, for small ic the structure of critical nuclei and,
therefore, the character of the interphase energy significantly
change. Hence, strongly metastable systems should be
considered separately [142, 143]. It is appropriate to describe
them in the framework of the continual theory [54], which
represents a phase transition as a relaxation of the order-
parameter field j:

g
qj
qt
� ÿ dO

dj
� f� ; �3:21�

where g is the kinetic coefficient, O is the grand thermo-
dynamic potential, and f� is a random force describing
thermal fluctuations [32, 54]. Let us represent the function
E�s� entering (2.10) in the form of a series in the neighbour-
hood of the point s0 � ÿ

�������������������
1ÿ T=Tc

p
corresponding to the

boundary of a metastable region (s0 � 2n1s ÿ 1, E 00�s0� � 0):

E�s� � E�s0� � lc ÿ l
2
�sÿ s0� ÿ h0

6
�sÿ s0�3 � . . . ; �3:22�
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Figure 6. Time dependence of the nucleation rate for G � 10: 1 Ð k � 0;

2Ð k � 1=2; 3Ð k � 1; 4Ð k � 2.
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Figure 7. Size distribution function of new-phase islands forG � 10, k � 2:
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Figure 5. Dependence of the function jk on x: 1 Ð k � 0; 2 Ð k � 1=2;
3Ð k � 1; 4Ð k � 2.
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where h0 � ÿE 000�s0� � 2�Tc=T�2
�������������������
1ÿ T=Tc

p
, and lc is the

critical value of the parameter of metastability which
corresponds to xmax. Assuming the supersaturation to be
sufficiently close to xmax for s to be close to s0, we shall
restrict our consideration to the first three summands in
(3.22). Following Ref. [54], we shall introduce the variable
j � �sÿ s0�=s�, where s� � ��lc ÿ l�=h0�1=2, and measure the
length in the units R� �Rsf2�Tc=T��h0�lc ÿ l��ÿ1=2g1=2 and
the energy in the units E� � kBTc n0R

2
s �lc ÿ l�=2h0. Then the

grand thermodynamic potential of the system will take the
form

O�j� �
� �

Hj2

2
� 2j

�
1ÿ j2

3

��
dr� const : �3:23�

The valuej � ÿ1 describes a homogeneous equilibrium state
of adatoms in these variables. Measuring the time in the units
t� � 2=�gkBTcn0R

2
s � and f� in the units E�=s�, we shall write

the equation of the order-parameter field relaxation in the
form [54]

qj
qt
� Dj� 2�j2 ÿ 1� � f� : �3:24�

Equation (3.24) does not depend on any parameters of the
thermodynamic potential, and therefore the phase transition
kinetics in the vicinity of the spinodal is described similarly for
any real E�s� (only the units of measurements are changed).
This equation was thoroughly examined for the two-dimen-
sional case in Ref. [54]. In particular, the equilibrium
configuration jc describing the critical nucleus was deter-
mined, the spectrum of a linearized kinetic operator and the
corresponding eigenfunctions were found and the nucleation
rate was calculated.

Thus, there exist three ways of relaxation of a super-
saturated adatom population. The first is realized in weakly
metastable systems where the supersaturation x is much lower
than xmax � n1s=n1e ÿ 1. In this case the critical nucleus is so
large (ic 4 1) that its fluctuations lead to a change of only the
coordinate of its boundary, although it has a considerable
thickness. The structure of the nucleus itself will remain
unchanged. In this event it is convenient to apply the
capillary model, in particular, formula (2.32). The second
way of relaxation takes place for x4xmax. Here the critical
nucleus contains only a few particles and is so small that its
fluctuations affect not only the boundary, but the whole
nucleus. In other words, the internal structure of the critical
nucleus itself changes during fluctuations. The nucleation
rate in this case depends on the supersaturation as

I�x� � I�xmax� exp
�ÿ const�xmax ÿ x�2� : �3:25�

And, finally, the third way of relaxation lies through spinodal
decomposition. It is realized for x5xmax. In this event the
system is unstable, ic � 1, and thermal fluctuations generally
destroy the structure of critical nuclei and lead to an increase
of periodic fluctuations of substance concentration. This
periodicity is a consequence of the fact that near a growing
new-phase island no other islands are produced, and the
whole ensemble of islands is strongly interacting [54].

3.4 The kinetics of film condensation from a solution-melt
Let us consider a pure single-component melt with a crystal-
lization temperature Tc. If the melt is supercooled, i.e. its
temperature is belowTc, the formation of a solid phase begins

in it [59, 144 ± 146]. The rate of this process increases sharply
with elevation of supercooling [146]. If a foreign substrate is
placed in a supercooled melt, it may initiate new-phase
nucleation even for fairly low degrees of supercooling.
Moreover, if heat is removed from the substrate, nucleation
will begin even in a superheated melt with a temperature
above Tc, because the substrate forms a layer of supercooled
melt around itself.

In some liquid-phase epitaxy methods, a substrate is
rotated in a melt. As is shown in Ref. [17], in order to make
the control over the ensemble of new-phase nuclei occurring
on the substrate easier, it is necessary to rotate the substrate
parallel to the melt plane with a constant frequencyo. Then a
boundary layer with a thickness of the order of �n=o�1=2,
where n is the kinematic viscosity, appears around the
substrate. This boundary layer noticeably affects the tem-
perature distribution around the substrate and sometimes
results in the onset of the Ostwald ripening stage [17]. It is
conventional to think that a cooled substrate initiates new-
phase nucleation only in a narrow melt layer of thickness leff,
adjoining the condensation surface and intimately related to
it. The ensemble of new-phase islands generated in this layer
further forms a thin crystalline film on the substrate surface.
If the melt temperature in this layer is assumed to be
unchanged and equal to T (this nucleation layer is analogous
to a layer of adsorbed particles in a vapor-grown film), the
process of film nucleation from a melt will be identical to the
growth from a vapor. Indeed, the main system of equations of
film crystallization, which consists of the law of heat
conservation in the near-surface layer and the kinetic
equation for the distribution function of nuclei by size, is
completely analogous to the corresponding system of equa-
tions for a vapor (they differ only in coefficients) [5, 146]. It
can be solved, in particular, with the help of the perturbation
theory considered above. In this case one finds the time
dependences of the supersaturation x � �Tc ÿ T�=Tc, of the
nucleation rate, of the nucleus surface concentration, size
distribution, etc.

A single-component film can be obtained not only from a
pure melt of a given substance, but also from a melt with a
considerable fraction of impurity or solvent that forms
eutectics with the film material. In a certain range of
temperatures (from the pure material crystallization tempera-
ture to the temperature of the eutectics) and concentrations
(exceeding saturation level), a given substance can also be
crystallized from a binary solution-melt. However, as follows
from the general theory of cluster growth from a binary melt
[17], the growth mechanism will differ from the preceding
case. Indeed, the driving force of the crystallization process is
now supersaturation rather than supercooling, and the
islands now grow owing to diffusion rather than thermal
conductivity. The process of film nucleation from a solution is
therefore much slower than that from a melt, and under
identical nucleation conditions a solution-grown film has
finer grains than a melt-grown one. Using perturbation
theory one can also calculate here all the basic characteristics
of condensation [146].

Thus, in the film nucleation from a solution-melt, the
driving force of new-phase island formation is supercooling
or supersaturation in a thin nucleation layer surrounding the
substrate and the clusters that grow on it. The effective
thickness of this layer is determined by the character of
interparticle interaction of substrate molecules, of molecules
from the solid and the liquid phases. The flow of substance
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from the solution into this layer (or a heat flow from the melt)
depends on the properties of the boundary layer of the liquid
phase surrounding the substrate and induced by substrate
rotation in a viscous medium [146]. Changing the velocity of
rotation one can change the relaxation time t of the driving
force of nucleation and, thus, change the number of generated
islands. In solutions, for a constant x0 an increase of o lowers
t and raises N. In melts, an increase of o at a constant melt
temperature T1 far from the substrate lowers x0 and,
therefore, I�x0� and N. Consequently, in this case an increase
of o makes the film more large-grained. Mathematically, the
nucleation of films frommelts, solutions, and vapor proceeds
identically. However, the rate of variation of the driving force
of phase transition and its duration differ strongly in all the
three cases, because the thermal diffusivity w in a melt greatly
exceeds the diffusion coefficientD in a solution and the latter,
in turn, is much larger than the coefficient Da of adatom
diffusion across the substrate (customarily, w�10ÿ6 m2 sÿ1,
D�10ÿ9 m2 sÿ1, andDa�10ÿ12 m2 sÿ1). This leads to the fact
that a melt-grown film is the most large-grained, while a
vapor-grown one is the most fine-grained [146]. Such a
conclusion is confirmed by many experimental results on the
study of initial film growth stages [1 ± 4].

3.5 Multicomponent nucleation
If an adsorbed vapor is multicomponent, the nuclei grown
from it will also be multicomponent, their most probable
composition being determined by the minimum free energy of
nucleation [80]. Let us estimate the mean time tp of particle
involvement into a phase transition. For the rate of particle
attachment to a nucleus Ia � 1020 mÿ2 sÿ1 and the surface
concentration of adsorbed particles n1 � 1017 mÿ2, we have
tp � n1=Ia � 10ÿ3 s. As the supersaturation elevates, the
quantity tp rapidly decreases. Simultaneously with this
process, adatoms can undergo a chemical reaction [147]. In
the lattice model of adsorbed gas, the mean time tc of particle
involvement into a chemical reaction is estimated as
�Dan1�ÿ1 exp�Ec=RT�, where Ec is the chemical reaction
activation energy, R is a molar gas constant, T is the vapor
temperature, and Da is the coefficient of particle diffusion
across the substrate. For high-rate chemical reactions with
Ec � 10 kkal molÿ1 at T � 500 K and n � 1017 mÿ2,
Da � 10ÿ12 m2 sÿ1 we obtain tc � 0:2 s, that is, tp 5 tc. For
sluggish and moderate-rate reactions with Ec � 15 ±
40 kkal molÿ1, the tc is still higher.

Thus, if a system is supersaturated, the first to occur is
generally a phase transition and only after does a chemical
reaction begin. Very high-rate (ionic type) reactions with
Ec < 5 kkal molÿ1 are an exception, but such reactions do
not frequently occur in the vapor growth of solid films. If
however tc 5 tp, the first to occur is a chemical reaction and
only afterwards a film is condensed from the single-compo-
nent vapor produced in the reaction. Such single-component
film nucleation is a particular case of the multicomponent
nucleation, in which supersaturation sets-in only in a
chemical reaction. Accordingly, for certainty one can assume
that tp 5 tc. In this case, the boundary of the concentration
region in which condensation proceeds from a multicompo-
nent vapor has the form Hÿ1 � 0, where H is the activation
barrier height.

We shall show howH can be calculated for the nucleation
from a multicomponent vapor. Since a chemical reaction in a
vapor has not yet begun, the new-phase nuclei make up a
mixture of particles of different components.We shall assume

such a mixture to be a regular solid solution. Let m be the
number of vapor components, and i1; i2; . . . ; im the number
of particles of each component in a nucleus. Then the free
nucleation energy F expressed in the thermal units kBT is
equal to [85]

F�i1; . . . ; im� � s�i1; . . . ; im�Sÿ
Xm
j�1

ij ln
nj

nje�i1; . . . ; im�

ÿ ln
n0Pm
j�1 nj

; �3:26�

where s is the specific interphase energy, S is the area of the
nucleus phase boundary, nj is the surface concentration of the
component j, nje is the vapor concentration of the component
j which is in equilibrium with the nucleus of this particular
composition, and n0 is the concentration of the lattice sites on
which atoms are adsorbed. The nucleus composition is
determined by the set of molar concentrations fnkg of each
component, where

nk � ikPm
j�1 ij

;
Xm
j�1

nj � 1 : �3:27�

The dependence of s and nje on nk for a regular solid solution
with a given heat ofmixing of components is calculatedwithin
the thermodynamic theory of solutions [148]. In particular, if
a nucleus is an ideal solution then

s �
Xm
j�1

sjnj ; nje � n0jenj ; �3:28�

where sj and n0je are the interphase energies and densities of a
saturated vapor of pure components. Solution of the system
of equations qF=qij � 0 gives the number of particles of each
component ijc in the critical nucleus, after which one can
readily calculate the height of the activation barrier
H � F�i1c; . . . ; imc�. The equation Hÿ1�n1; . . . ; nm� � 0 speci-
fies the surface that separates the regions of concentrations
with and without nucleation. In the simplest case of an ideal
solution with equal sj, this equation takes the form [147]Xm

j�1

nj

n0je
� 1 : �3:29�

Along with nuclei containing all m components, those
involving a smaller number of components can be formed
on the substrate, and therefore the whole range of concentra-
tion variation is divided into different phase regions with the
help of 2m ÿ 1 interfaces of the type Hÿ1�nj� � 0,
Hÿ1�nj; nk� � 0, etc. In particular, for m � 2, three dividing
lines Hÿ1�n1� � 0 �n1 � n01e�, Hÿ1�n2� � 0 �n2 � n02e�, and
Hÿ1�n1; n2� � 0 specify five phase regions (Fig. 8).

In region a no new-phase formation is observed, in region
b only two-component islands nucleate, in region c two-
component islands and those of the atoms of the second
component, in region d two-component islands and those of
the atoms of first component, and in region e two-component
islands and islands of the atoms of each component (the
nucleation rate for islands of a mixture is as a rule much
higher than the single-component nucleation rate). In the
newly appeared islands of a new phase a reaction begins
among the components or (if the components cannotmake up
a chemical compound) a eutectic decay, or the formation of a
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solid solution. The behaviour of the system is determined by
the type of the corresponding state diagram for a solid
mixture. In particular, for a binary system there exist five
main types of state diagrams for a solid mixture [5, 147]. All
possible cases of condensation are accordingly divided into 25
variants. All of them are considered in detail in Ref. [147].
Systems with three or more components are analyzed
similarly but with a significantly greater number of versions.

The analysis of the behaviour of an ensemble of adsorbed
particles shows that all the versions of multicomponent film
condensationmake up a set of processes, each proceeding at a
certain stage [147].We shall enumerate the processes that play
the key role:

(1) chemical reaction in an adsorbed multicomponent gas
with a simultaneous nucleation of the final product of the
reaction;

(2) formation of nuclei representing a mixture of compo-
nents;

(3) chemical reaction in such nuclei;
(4) growth of islands of a new phase from a supersaturated

adsorbed vapor;
(5) separation of a eutectic mixture;
(6) evaporation of nuclei.
The methods of description of processes 1 ± 6 are pre-

sented in Ref. [5].

3.6 Computer simulation of film growth
All the methods of computer simulation can conditionally be
divided into three main types:

(1) analytical simulation, which is a numerical solution to
the equations of the theories of nucleation and growth of
films;

(2) statistical simulation employing the Monte-Carlo or
molecular dynamics methods as well as various random
processes for the description of the behaviour of atoms or
clusters;

(3) stochastic simulation based on the solution of non-
linear stochastic differential equations that generalize the
Langevin equation.

Models of the first typewere utilized in the classical papers
[8, 124], their modern modifications appeared in Refs [129,
149] and in the works [150 ± 154] devoted to the evolution of
an ensemble of decorated substrate steps. A great many of

papers on numerical simulation of film growth pertain to the
second type (see, for example, Refs [155 ± 165]). The advan-
tages and disadvantages of the majority of the models, as well
as the results obtained in their terms are discussed in the
review [165]. It should be emphasized that a common shortfall
of statistical models is a disregard of the possible decay of
subcritical nuclei. The increase in the number of particles in
critical nuclei and the decrease of the nucleation rate, which
both are induced by a lowering of the supersaturation during
condensation, are thus ignored. The papers assuming ic � 1
(i.e. a two-particle nucleus never decays and is thought of only
as growing) generally describe the spinodal decomposition of
an unstable adatom population rather than nucleation in a
metastable system, as was claimed in the statement of the
problem.

The works on stochastic simulation largely investigate the
time evolution of a rough film surface [132 ± 135]. The
classification and the description of various stochastic
approaches are presented in the review [166]. The most
frequently applied model is that due to Kardar, Parisi, and
Zhang [167] according to which the profile of a growing
surface is specified by the equation

qh�x; t�
qt

� DeffDh� K0
2
�Hh�2 � Z0�x; t� : �3:30�

Here h�x; t� is the film thickness at a point x at an instant of
time t, Deff is the effective diffusion coefficient, K0 is the
constant determining the lateral growth rate, and Z0 is a
random variable related to a random particle flux onto the
substrate. The system was shown to obey the law of dynamic
scaling

os �
�������������������
hh2 ÿ �h2i

q
� Laf

�
t

Lz

�
: �3:31�

Here os is the mean thickness of a growing surface, L is the
substrate size, and a and z are the scaling factors typical of a
particular model.

In conclusion we note that the scaling behaviour is
inherent in many quantities describing nucleation and
growth processes [5, 37], namely, the size distribution of
nuclei in the course of liquid coalescence [158, 168] and at
the Ostwald ripening stage [17], the new-phase island growth
rate [169 ± 175], the distribution over the spacing between
them [176], the interface thickness [167], etc.

3.7 Comparison with experiment
We shall first compare the theory with experiment at the
initial stage of film nucleation from vapor. It should be
immediately stressed that a sufficiently complete quantita-
tive comparison is impossible in this case because of the high
level of errors in both theoretical and experimental data.
Therefore only a qualitative comparison can be made. The
linear dependence of n1e on 1=T is experimentally confirmed,
for example, for the systems Au/NaCl and Au/KCl [69, 70] as
well as for some semiconducting films [177], which makes it
possible to estimate the quantity Tc (see Section 1.3). The
dependence of n1s on T has not obviously been measured, and
it is hence impossible to compare this dependence and xmax�T�
with experiment. The dependence of the nucleation rate I on
the temperature T and the rate J of particle supply to the
substrate is fairly involved. In many cases, however, we can
restrict ourselves using the exponential approximation
according to which the whole dependence of I on x and T is

n01e n1

n2

n02e

c e

a

b

d

Figure 8. Phase diagram of a binary system.
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expressed in terms of exp�ÿH�x�=kBT�. The pre-exponential
factors are then assumed to be constants, i.e. one obtains

I � Ip exp

�
ÿH�x�

kBT

�
: �3:32�

In particular, for cap-shaped nuclei with a curvature-
independent interphase energy we have H=kBT�b0=�kBT�3�
ln2�Jtr=n1e�, where b0 � 4pe3w�2� cos y��1ÿ cos y�2=3. Tak-
ing into account the dependences of tr and n1e on T:
tr � tr0 exp�Ea=kBT�, n1e � n0 exp�ÿ2Tc=T�, where Ea is the
desorption activation energy, we find from (3.32)

ln
I

Ip
� ÿTI

T
; TI � b0=kB�

Ea � 2kBTc � kB �T ln�Jtr0=n0�
�2 ;

�3:33�

where �T is the mean temperature in the investigated interval
(the use of a mean temperature is justified only if
kB�Tÿ �T� ln�Jtr0=n0�5Ea � 2kBTc). The linear dependence
of ln I on 1=T has been observed in very many experiments
(see, for example, the references in the reviews [1 ± 4, 8]). The
measurement of the inclination of this straight line allows one
to find from experimental data the quantity b0, which is the
basic constant in the capillary nucleation theory (dependence
(3.33) with a different TI is valid for disk-shaped clusters as
well). The dependence of I on J at constant T is also given by
formula (3.33) with �T � T. It contains two parameters and
agrees well with the experimental curves presented, for
instance, in Ref. [8]. Accounting for the preexponential
factors changes formula (3.33) only slightly.

It should be stressed that the atomistic Walton model [29]
also leads to a linear dependence of ln I on 1=T with a
disregard of the dependence of ic on T. Some authors who
believe that in their experiments the quantity ic is very small (it
is most often assumed that ic � 1), compare their data with
the Walton model for small ic and claim a good agreement
between the theoretical and experimental data. The results of
such a verification should apparently be treated with
scepticism, first, because actually ic strongly depends on T
and, second, because the time within which ic � const is
typically extremely short, and within such a short time it is
thus impossible to measure the rate of appearance of very
small nuclei (for large ic it is much simpler to carry out such
experiments). Third, if ic � 1 then the new-phase clusters in
the usual sense of the word are altogether absent. There are
only periodic changes of concentration with increasing
amplitude, and the period of these changes is determined by
the maximum of the gain factor [32] (and so it is unclear what
exactly the experimenters registered in this case). We
emphasize that in systems where ic is indeed equal to unity,
the structure of the new phase is absolutely different from that
in ordinary nucleation. Some cases of solid solution decom-
position or binary melt crystallization [32, 62] may serve as
examples. The temperature dependence of the maximum
cluster concentration for m > 1 and at sufficiently high T is
determined from (3.18) in the exponential approximation

Nmax � Np

�
I

Ip

��mÿ1�=m
; �3:34�

where Np � const, and m is the cluster growth index, from
which we find

ln
Nmax

Np
� ÿmÿ 1

m

TI

T
: �3:35�

Form � 1, the increase of the number of clusters is restricted
not only by a decrease of supersaturation, but also by
coalescence (see Section 4.1). From Eqns (3.33) and (3.35) it
follows that comparing the inclination of the dependences of
ln�I=Ip� on 1=T and ln�Nmax=Np� on 1=T for one and the same
J, one can find the quantity m from experimental data and,
therefore, establish the cluster growth mechanism. It should
be stressed that with temperature variation the growth
mechanisms may at times change, which is explained by a
strong temperature dependence of the kinetic coefficients (in
this case the dependence of ln�Nmax=Np� on 1=T has the form
of a broken line). Dependence (3.35) is also confirmed by a
large number of experimental data obtained for different
materials [1 ± 4, 8]. The dependence ofNmax on J at constantT
is also given by formula (3.35) with allowance for the
dependence of TI on J. In particular, for cap-shaped nuclei
we find from (3.35)

ln
Nmax

Np
� ÿ const

�const� ln J�2 : �3:36�

Selecting two constants entering (3.36), one can readily make
this dependence coincident with the experimental results.

It has already been pointed out that because of the short
duration of the nucleation stage and the small nucleus size it
is extremely difficult to obtain reliable experimental data on
the nucleation rate, the size distribution of nuclei, etc. for
the vapor-grown films (for the solution-melt growth of films
the nucleation stage is still shorter). Nevertheless, there exist
systems in which the first-order phase transition is rather
long (102 ± 104 s) and the nuclei are rather large (10ÿ5 m).
Such systems are perfectly suited to comparison of the
theory with experiment. One such system is a lead
zirconate ± titanate film in which the first-order phase
transition from the pyrochlore phase through nucleation
into a new perovskite phase is observed at a temperature
above 710 K [178]. The high value of the effective heat of
phase transition caused by substantial mechanical stresses in
the film and by the piezoeffect leads to fairly slow nucleus
growth (owing to thermal conductivity) and a large nucleus
size [178].

With the purpose of verifying the above-mentioned
theoretical results, a special series of experiments was carried
out that determined the dependences of all the basic
characteristics of phase transition on time and on the
maximum relative superheating x0 (an analog of initial
supersaturation) [178]. Figures 9 ± 13 present the experimen-
tal data obtained together with the theoretical findings. The
difference between them does not as a rule exceed 7%, which
testifies to the high degree of their accord. The decrease of the
number of new-phase nuclei after 7000 s of heating in Fig. 10
is explained by liquidlike coalescence (see Section 4.1). The
inclination of the dependence of ln I on 1=x 2

0 in Fig. 11 is twice
that for the dependence of lnNmax on 1=x 2

0 shown in Fig. 12,
and therefore the cluster growth index m is equal to two [see
Eqns (3.33), (3.35)], which completely coincides with the data
of direct observation: m � 2:02� 0:05. The size distribution
function of new-phase islands demonstrated in Fig. 13 also
agrees well with the corresponding theoretical result (3.19)
[178].
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4. The kinetics of thin-film condensation
at the late stage

The late stage of thin film growth is characterized by the fact
that the new-phase islands generated earlier begin to interact.
There exist three main types of cluster interaction. The first is
cluster merging due to their migration over the surface (the

migration mechanisms were briefly discussed in Section 2.8).
The second is cluster merging due to their lateral growth [168,
179]. The third is the growth of larger clusters at the expense
of the evaporation of smaller ones [the so-called Ostwald
ripening (OR) stage]. The latter type of interaction is realized
through the generalized diffusion or temperature field [17].
The first two types are discussed in Section 4.1, and the third
in the subsequent sections.

4.1 Cluster coalescence
All the ways of new-phase island merging on a substrate are
customarily reduced to two types for the sake of simplicity:
liquidlike (like two liquid drops) or solid-phase (like the
adhesion of two solids) [1, 7, 11]. The central problem in the
theoretical description of coalescence (merging) of islands is
the nonlinearity and even the nonlocality of this process in the
dimension space [180, 181]. This nonlocality leads to a whole
number of interesting physical effects established experimen-
tally, namely, the appearance of several maxima in the size
distribution function of nuclei [182], a nonmonotone time
dependence of substrate occupancy, the appearance of a
clearly pronounced maximum in the surface concentration
of islands, and so on. Furthermore, in the film growth of some
materials coalescence is responsible for the percolation
transition [183, 184]. It is at the coalescence stage that the
structure of a growing film is formed, and therefore control-
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ling the coalescence one can control the structure and some
properties of the films. In spite of the very rich experimental
material, there are almost no theories of coalescence or
merging of new-phase islands because it is difficult to
describe a nonlocal, nonlinear interaction. There exist only
two main approaches to the description of this phenomenon,
namely, the geometric theory of solid-phase adhesion based
on the Avrami ±Kolmogorov model [185], and the kinetic
theory of liquidlike coalescence employing the Smoluchowski
model [186].

In the geometric model, the nonlocality problem in the
dimension space is successfully solved by the introduction of
fictitious nuclei growing inside a new phase by a certain law.
According to thismodel, the substrate occupancy by islands is
equal to [185]

Z�t� � 1ÿ exp

�
ÿ p

�t
0

I�t 0�
� �t

t 0
v0�t 00 ÿ t 0� dt 00

�2
dt 0
�
;

�4:1�
where v � dR= dt is the rate of growth of new-phase islands
which is assumed to be independent of R. The distribution of
islands by size in the Avrami ±Kolmogorov model was
calculated in Ref. [187]. The kinetics of substrate occupation
with allowance made for a decrease of supersaturation is
discussed in Ref. [188].

Liquidlike coalescence cannot already be described in the
framework of the geometric model, and therefore the integral
transformation technique is used here to solve the nonlocal
integral equation for the distribution function. The liquidlike
island merging due to their migration was described by
Kashchiev [189] in the framework of the Lushnikov ±
Piskunov approximation [180] (where lateral island growth
is absent). In particular, it was shown that for a certain form
of coalescence nucleus the cluster distribution over radii has
the form

g�R; t� � gmax�t�
�

R

Rmax�t�
�2�m�1�

� exp

�
ÿ 2

3
�m� 1�

��
R

Rmax�t�
�3

ÿ 1

��
; �4:2�

where gmax is the maximum value of g, Rmax is the value of R
corresponding to gmax, and m > ÿ1 is the nucleus growth
index [189].

Liquidlike coalescence of clusters due to their lateral
growth was described in Refs [168, 179] in the framework of
the kinetic model. The size distribution function of clusters,
the nucleation rate, the cluster concentration, the substrate
occupancy by clusters and other coalescence parameters were
calculated.

In view of the importance of this process, we shall consider
it more extensively. We suppose that all the islands of the
condensed phase are of the same shape and their merging
proceeds instantaneously. Then we can introduce the dis-
tribution function g of stable clusters over the number of
particles in them i normalized so thatN�t� � � ii0 g�i; t� di is the
cluster concentration on the substrate (i0 is the minimal
number of particles in a stable aggregate). Assuming the
system to be sufficiently rarefied and allowing therefore only
for pair island collisions, we shall write the kinetic equation
for the function g in the following form

qg
qt
� q�vg�

qi
� 1

2

�i
0

b�iÿ i 0; i 0�g�iÿ i 0�g�i 0� di 0

ÿ g

�1
0

b�i; i 0�g�i 0� di 0 ; �4:3�

g�i0; t� � I�t��1ÿ Z�t��vÿ1��
i�i0 ; g�i; 0� � 0 ; �4:4�

where v � di= dt is the cluster growth rate, I is the nucleation
rate, Z is the substrate occupancy by islands, and b is the
coagulation nucleus [185] [we assume that g�i; t� � 0 for
i < i0]. The boundary condition (4.4) is imposed in accor-
dance with the principle of the division of the condensation
process into stages [55]. Since the functions v and I depend on
the supersaturation x�t�, equation (4.3) should necessarily be
closed by the law of conservation of matter. In what follows,
for the sake of definiteness we shall mainly consider a layer-
by-layer film growth, for which

Z�t� � nÿ10

�1
0

ig�i; t� di ; �4:5�

dx
dt
� J

n1e
ÿ �x� 1�

t
ÿ
�

n0
n1e
ÿ 1ÿ x

�
�1ÿ Z�ÿ1 dZ

dt
:

�4:6�

In an island regime of the thin-film growth we have
Z � const� nÿ10

�
i 2=3g�i; t� di, and accordingly the equation

of balance of matter will change.
We shall make an important remark concerning the

coagulation nucleus b. By definition, b�i; i 0� is the prob-
ability of merging of two islands containing i and i 0 particles
on a unit substrate area per unit time. Assuming that the
merging is caused only by the growth of motionless clusters,
we obtain

b�i; i 0� �
�
dR�i�
dt
� dR�i 0�

dt

�
P
ÿ
R�i� � R�i 0��

N�t� ; �4:7�

where R�i� is the radius of the contiguity region between the
island and the substrate, P�r� dr is the probability for an
island at a time t to be at a distance of r to r� dr from a
distinguished cluster. If the aggregates are randomly distrib-
uted over a flat substrate, then we arrive at

P�r� � 2prN�t� : �4:8�

For almost all the growth models, the quantity dR= dt, the
same asR, depends on i in a power-lawmanner, and therefore
the nucleus b is a homogeneous function, i.e. one obtains

b�ki; ki 0� � k mb�i; i 0� ; �4:9�

where m is the nucleus growth index. This property is also
inherent in the nucleus of coagulation due to cluster diffusion
across the substrate surface [189]. This circumstance substan-
tially simplifies the search for solutions of the system of thin-
film condensation equations (4.3) ± (4.6) because it allows us
to apply the Laplace transformation [186]. If coalescence
between only nearest neighbours is involved, then for high
cluster concentrations b becomes an inhomogeneous func-
tion. The same effect is observed provided that the correlation
between islands is taken into account [190].
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Concrete solutions of the system (4.3) ± (4.7) for some very
simple nuclei, which were obtained using the Laplace
transformation and the moment equation method, and the
dependence of the asymptotics of the distribution function on
the index of nucleus homogeneity were presented in Ref. [179]
where, in particular, the nonmonotone character of the
functions N�t� and Z�t� was shown to be one of the
consequences of the coalescence. For example, for constant
coalescence nuclei N reaches its maximum at approximately
Z � 0:38.

4.2 Ostwald ripening
The Ostwald ripening stage is the late stage of the phase
transition. It begins only when the sources of evaporated
adatoms are sufficiently weak and the supersaturation x on
the substrate is small and tends to zero. No new islands are
formed in this situation. The estimate of the starting point of
this stage can be found in Refs [17, 90, 91, 128, 142]. The
physical meaning of OR is as follows. At a late stage of
evolution of an ensemble of islands they begin to interact in a
peculiar manner. This interaction is realized through a
generalized self-consistent diffusion field. On a substrate,
this field can be established by adatoms with a concentration
�ra, vapor atoms with a density �rr or, if the substrate surface
contains linear defects, by adatoms (�rl) adsorbed at the
steps.{ This field depends on the size distribution function
f�R; t� of islands and is in equilibrium with islands of critical
size Rc. Islands of size R < Rc are dissolved in the diffusion
field because near them the equilibrium concentration rR of
atoms exceeds the mean field concentration: rR > �ra,
rR > �rl, or rR > �re. Islands of size R > Rc grow because for
them rR < �ra, rR < �rl. The critical size Rc itself goes on
increasing because the islands absorb the substance from the
substrate thus lowering the supersaturation.

For this interaction and, therefore, the OR stage to take
place, it is necessary that the two-dimensional island density
would satisfy the inequalities [17, 191]�

p� �R� li�2
�ÿ1

< Ns < �p �R
2�ÿ1 ; �4:10�

whereNs is the two-dimensional island density, �R is the mean
island radius, li � ls for mass transfer over the substrate
surface, and li � ll for mass transfer along the steps, ls and ll
being respectively the mean free path along the substrate
surface and along the steps. Otherwise, if Ns 5 �pR2�ÿ1, the
islands will `collide' and for Ns 4 �p�R� li��ÿ1 the adatoms
on the substrate will evaporate and will not participate in the
OR process provided that li � ls. When li � ll, the adatoms
can leave the step and will not participate in ripening of the
ensemble of islands located at the step.

The Ostwald ripening of an ensemble of islands in thin
films was first investigated by Chakraverty [96, 192]. He
examined the evolution of an ensemble of single-component
islands with the shape of a spherical segment and located on
solid substrates in the regime of complete condensation and
also in the presence of atoms sputtered onto the substrate.
The main idea of the OR analysis of such systems took root in
the pioneering paper by Lifshits and Slezov [193]. These

authors showed that any disperse systems containing new-
phase nuclei and old-phase atoms{ possess a whole number of
common properties inherent only in disperse systems and
appeared in the course of their evolutionary growth. From the
thermodynamic point of view, this common property of
disperse systems is their deviation from equilibrium state
simultaneously in many parameters. One of the main signs
showing that a disperse system resides in a nonequilibrium
state is the presence of a fairly extended phase interface
associated with an excess free energy. At heightened tempera-
tures, when an appropriate diffusion mechanism becomes
valid, some processes proceed in disperse systems that lead to
a relaxation of the excess energy. These processes must be
accompanied by a diffusive mass transfer which is responsible
for the emergence of OR. This process was named after the
German scientist W Ostwald who, at the beginning of the
century, examined this phenomenon experimentally during
precipitation ripening }. The principal system of equations
describing this process has been presented in numerous works
generalized in reviews [5, 11, 90, 91, 191] andmonographs [17,
88]. When describing the nonisothermal ripening below, we
propose a more general system of equations, a particular case
of which is the one given. The OR stage was also thoroughly
investigated by Wagner [195], Ardell [196], Kahlweit [197],
Oriani [198], Cahn [199], Voorhees and Cliksman [200 ± 201],
Enomoto, Kawasaki, Tokuyama [203, 204] and many other
authors [205 ± 219].

An investigation of the OR stage raised the following two
questions:

(1) Is the size distribution function of nuclei, obtained by
Lifshits and Slezov, asymptotic (as the other time depen-
dences) or not?

(2) Why does the Lifshits ± Slezov distribution function
terminate at a `blocking' point [193], whereas the experi-
mental distribution functions have asymptotically decreasing
tails?

As concerns the second question, Lifshits and Slezov
answered it in their second paper [212] where they showed
that the tails resulted from nucleus coalescence (merging).
Obviously, that paper was noticed by few researchers. To
answer the first question, variousmathematical methods were
used, including perturbation theory, scaling theory, etc. The
mostwidely known is the paper byKahlweit [197].Hebelieved
that the Lifshits ± Slezov distribution was not uniformly valid
andwas therefore not asymptotic.However, he pointed out an
erroneous reason for the appearance of nonuniformity, for
which he was justly criticized [90, 91]. Margusee and Ross
[205] suggested that the solution of the kinetic OR equations
should be sought directly in the form of a series in t:

f�R; t� � tÿy0
�
f0�z� � tÿy1 f1�z� � tÿy2 f2�z� � . . .

�
; z � r

t b
;

�4:11�

where f is the distribution function of new-phase nuclei over
the radius R, t is time, and b, y0, y1, . . . are positive constants.

{The generalized field is formed, as a rule, by all concentrations, but as the

analysis [17] shows, it is difficult to obtain an analytical solution of the OR

problem. It is hence more convenient to investigate the evolution of an

ensemble of islands for each field separately and to choose the main mass

transfer mechanism (see Section 2.6).

{ The authors of Ref. [193] analyzed a diffusive decompostion of super-

saturated solid solutions.

} In the scientific literature there are two terms denoting this process. In the

Russian literature it is called `coalescence' [17, 90, 91, 193, 194] and in the

rest of the world `Ostwald ripening'. However, the term coalescence means

merging (coagulation), i.e. the process considered in Section 4.1 above.

Therefore, to avoid misunderstanding, we shall henceforth use the term

OR for the phenomenon investigated in the present section.
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Using an original technique, they managed to uncouple the
equations for f0 and f1 and to find their solutions. In so doing
the function f0 turned out to coincide with the corresponding
result of the Lifshits ± Slezov theory, from which Margusee
and Ross concluded that this was just an asymptotic solution.
Actually this is not at all an asymptotic solution, but a
solution corresponding to the Lifshits ± Slezov zeroth approx-
imation, because the series (4.11) is divergent at least at the
blocking point. The convergence of the series (4.11) was not
examined in the paper [205] at all while, as shown in Ref.
[213], the blocking point gives rise to nonuniform validity of
the series (4.11) already in the next order, i.e. f1�z�=f0�z� ! 1
as z tends to the blocking point. As is well-known, this is the
most crucial point of any asymptotic or perturbation theory
[140]. Similar error was alsomade in some other papers on the
OR theory. In paper [213] we constructed a rigorous
asymptotic theory of the OR stage, using a uniformly valid
solution, to find out that at the OR stage there exists a stable
asymptotic state characterized by the universal distribution
function. This leads to the peculiar evolution of an ensemble
of new-phase nuclei which is considered below.

So, Chakraverty [96, 192] believed that mass transfer
between islands is realized only through a surface diffusion
of adatoms and that the island growth rate can be controlled
by both the surface diffusion (heterodiffusion) of adatoms
and by the rate of consumption and emission of atoms by the
islands, i.e. by boundary kinetics. He assumed that the
emission and absorption (building-in) of atoms are realized
not by the island contour, but by its whole surface. Such an
assumption corresponds to the fact that self-diffusion flows
along a free island surface must exceed the heterodiffusion
flows on the substrate surface. This statement should have
been additionally grounded.

This problem was solved more exactly by Geguzin and
Kaganovki|̄ [88, 192]. They studied the evolution of an
ensemble of islands growing by the following mechanisms:
surface diffusion of atoms, gas diffusion of atoms, evapora-
tion-condensation of atoms, one-dimensional atomic diffu-
sion along steps and surface dislocations on a substrate (see
Section 2.6) with allowance for a possible island growth
control by boundary kinetics.

Later, the OR stage of an ensemble of single-component
islands with allowance made for all possible growth mechan-
isms and in the presence of atoms sputtered on the substrate
was investigated by Vengrenovich [214], Olemsko|̄ and
Paripski|̄ [215], and others [17]. The authors of these papers
found the laws of variation of the critical radius, height (if the
islands had the shape of a flat disc), the island density in time,
as well as island size distribution to a zeroth approximation.
The analysis has shown that these characteristics depend
substantially on the island growth mechanism and the
intensity of atomic supply onto the substrate. According to
Refs [5, 11, 17], if a flux of atoms coming onto a substrate has
a power-law asymptotics: g�t� ! ng0t

nÿ1, where n5 0 and g0
is the constant, then there exist only two types of sources,
namely, weak with n < d=p and strong with d=p4 n.
According to the rigorous results obtained in Ref. [213], the
asymptotic laws of variation of the critical radius, the height
and the density of islands coincide with those of Ref. [193],
whereas the asymptotic size distribution function differs from
the functions obtained in the zeroth approximation. There-
fore, we present below the expressions of the general laws of
island evolution for sources with n < d=p in accordance with
the results obtained in Ref. [213]. The general form of these

laws is as follows:

�R�t� � const� Rc�t� ; �4:12�
Rc�t� � �const� A0pdt�1=p ; �4:13�

h�t� � �const� A00pdt�1=p ; �4:14�

N�t� � const� t nÿd=p ; �4:15�

f�R; t� � N�t�
Rc�t� Pp

�
R

Rc�t�
�
; �4:16�

Pp�u� � up

up�1 ÿ �p� 1�u� p

� exp

�
dÿ n�p� 1�

2

�up
u

xp dx

xp�1 ÿ �p� 1�x� p

�
: �4:17�

HerePp�u� is the distribution function normalized to unity, so
that

�1
0 Pp�u� du � 1, and

vp�u� � pp�pÿ 1�ÿ�pÿ1��uÿ 1� ÿ up

pupÿ1 ; �4:18�

u � �pÿ 1�R=pRc (Fig. 14 shows the functions Pp�u�
obtained by Lifshits and Slezov for p � 2 and n � 0 and in
the paper [213]), up are constants determined from the
normalization condition

�
Pp du � 1, A0pd and A00pd are kinetic

coefficients depending on mass transfer coefficients and on
other constants of the deposited material.

In the case of atomic sources with d=p4 n < d=�pÿ 1�,
both for cap-shaped and disc-shaped islands the critical
radius is also specified by equation (4.13) and the distribu-
tion function can be calculated within the kinetic nucleation
model [see Eqn (3.19)].

The basis for the analysis of the OR process is the
Fokker ± Planck equation (2.27) in which the term with the
second derivative of the distribution function is omitted. As a
result, the remaining equation of continuity governs a
determinate Ostwald ripening process. Stochastic ripening
with the second derivative in the Fokker ± Planck equation
was investigated in Refs [219, 220].

The influence of the volume fraction of a new phase on the
OR stage has been of great interest for many researchers for a

0 0.2 0.4 0.6 0.8
u

1.0

2

1

P2

Figure 14. Functions Pp�u� for p � 2 and n � 0, obtained in Ref. [213]

(solid line) and by Lifshits and Slezov (dotted line).
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long time [90, 91, 196, 208]. This influence consists in fact in
the interaction of islands caused by the direct overlap of their
diffusion fields. The effect of such interactions on the OR
process will be particularly strong in the presence of sputtered
atoms because the volume fraction of nuclei will increase
under such conditions. For an analysis of such interactions
various methods are used [204, 206, 208]. We should specially
mention paper [218] in which the author used the method
based on the classical diagram technique, and the paper by
Slezov [91] in which this interaction is reduced to a one-
particle problem in an effective medium with a renormalized
diffusion coefficient dependent on the mean particle radius in
an ensemble.

4.3 Thermal ripening
After new-phase islands have been formed on the substrate
surface in the growth from solution-melt (see Section 3.4),
they start enlarging and decrease the melt supercooling. After
a time, the thermal ripening stage, similar to the diffusive
ripening stage, is reached in the system since the thermal-
diffusivity equation is totally analogous to the diffusion
equation.

In line with Refs [17, 107 ± 109] we shall consider thermal
ripening of ensembles of islands. At the initial stage, when the
supercooling x is still sufficiently high, the islands grow
independently of one another and have practically equal
sizes [17, 145, 220, 221]. With time, the supercooling
decreases owing to the heat liberated in crystallization, and
the islands will interact with each other by means of their
generalized temperature field. Indeed, according to the
Gibbs ±Thomson equation, the portion of a crystal bounded
by a surface with a large curvature melts at a lower
temperature than the corresponding portion of a flat surface
[17, 107 ± 109]:

TR � Tc ÿ �dÿ 1�sSLTcw

qR
: �4:19�

Here TR is the equilibrium temperature at the surface of an
island of radius R, sSL is the interphase energy of the
boundary surface, q is the latent crystallization heat per
atom, and w is the volume per atom.

Thus as x! 0, larger islands that liberate heat will grow
at the expense of smaller ones that absorb the heat and melt.
Such a process can obviously be called `thermal' Ostwald
ripening. It should be taken into account that during diffusion
ripening the flows are opposite to those occurring in thermal
ripening.

We shall now consider a substrate of thickness l which
adjoins a single-component melt with one of its planes. On
this plane there is an ensemble of islands with the initial
distribution function f�R; 0� � f0�R�. The islands can have
the shape of either a spherical segment or a cylinder. Above
the substrate there is a melt layer with a thickness of the
order of the average island size �R. Otherwise the initial melt
supercooling will not decrease. As shown in Refs [17, 109],
thermal ripening is in principle possible when the melt
thickness is infinite, but the substrate must then be rotated
in the melt with a certain frequency o. Such a rotation
creates a hydrodynamic layer immediately adjacent to the
substrate surface. The properties of this layer differ from
those of the remaining part of the liquid because complete
mixing occurs in the layer and its temperature is constant
(see Section 3.4). In this case, either the removal or inflow of

heat will occur in the system, i.e. ripening will proceed with
heat sources (sinks).

A complete system of equations governing the thermal
ORof an ensemble of new-phase nuclei in the presence of heat
sinks and heat sources was derived and the heat fluxes (which
depend on the Prandtl numbers) removed from the melt were
determined in Refs [17, 107 ± 109]. This system of equations
differs from that for the diffusion ripening in that instead of
the equation of mass balance it contains the equation of heat
balance. It is precisely this equation that ultimately specifies
the behaviour of the ensemble of nuclei at the OR stage. The
solution to this system of equations coupled with one of the
equations for the nucleus growth rate (2.38) was discovered in
Refs [107 ± 109] and in the general case it has the form (4.12) ±
(4.18) because irrespective of the physical nature of the system
the phase transition proceeds by unified laws{. At the same
time, the kinetic constants A0pd and A00pd will naturally be
different.

4.4 Nonisothermal ripening in multicomponent films
The general OR theory in nonisothermal conditions was
constructed in Refs [17, 92 ± 94, 102, 103]. The OR processes
in multicomponent systems are richer and more diverse than
similar processes in single-component systems. In multi-
component systems, substance redistribution is a conse-
quence of not only the Gibbs ±Thomson effect, but also of
the chemically nonequilibrium state. Islands of a chemical
substance (phase s) may be stable from the point of view of the
Gibbs ±Thomson effect but unstable from the point of view
of the thermodynamics of chemical reactions. At the OR
stage in multicomponent systems, when the component
concentration is rj�0�5 1 (here rj�0� is the concentration of
the component j by the onset of OR), new islands are not
formed and all the islands of the ensemble interact with each
other through their generalized diffusion field. Islands of
phase s with radius R smaller than the critical radius Rs

c are
dissolved in the diffusion field, while islands with a radius
exceeding the critical one grow. In a multiphase system, not
only islands of the same phase, but also those of different
phases will interact, and of all the stable phases only those for
which the solution is supersaturated will be stable. For low
component concentrations, when the law of mass action can
be applied to the proceeding chemical reactions, this law can
be written in the form

X
j

n sj m
s
j � ln

Psj
ÿ
rj�0�

�n sj
Ks1

5 0 : �4:20�

Here Ks
1 is the equilibrium constant of the sth chemical

reaction, s j is the number of the phase containing the j-
component, m s

j is the chemical potential of the j-component. If
the islands generated in the system do not contain common
components, condition (4.20) is necessary and sufficient since
they will grow independently. Providing the islands contain
common components, during their growth substance redis-
tribution among the islands is possible and, although the
solutionwas at first supersaturated in separate components, it
may further appear to be unsaturated. In this case condition
(4.20) is only necessary for a selection of islands capable of
further competitive growth.

{ We note that the distribution functions found in these papers are not

asymptotic and should be replaced by the functions (4.17) obtained in Ref.

[213].
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In multicomponent systems, in the course of OR heat is
liberated in chemical reactions, which affects the reaction
constants. The thermal fields induced due to the heat
liberation in chemical reactions affect the size distribution of
islands in a nonlinear manner. The equilibrium concentration
of the dissolved substance is not constant, but increases with
temperature. The supersaturation will then tend to zero faster
than in the isothermal case; however, the substance concen-
tration gradient decreases in the process, which leads in turn
to a decrease of the island growth rate. The amount of heat
liberated in the course of phase transformation therewith
decreases (if the system is conservative), which brings about
stabilization of the equilibrium concentration, i.e. the diffu-
sion and thermal fields become self-consistent. Thus, the
system temperature heightening may lead to a decay of some
phases.

A complete system of equations governing the evolution
of an ensemble of multicomponent and multiphase islands at
the OR stage looks like this [17, 92, 93]:

qf s�R; t�
qt

� qf s�R; t�v sR
qR

� 0 ; �4:21�

w s
X
s j

�1
0

f s�R; t�R3ÿdh3ÿdJ s
DR dR � n1jgDj

jt n1ÿ1 ; �4:22�

Yns
j�1
�rsjR�n

s
j � Ks

R�TR� ; �4:23�

Jsjr
n sj
� Jsj 0R

n sj 0
; �4:24�

XK
s�1

wsqs
�1
0

f s�R; t�Rdÿ1h3ÿdJsTR dR � n2jgTjt n2ÿ1 ; �4:25�

qs
Xns
j�1

n sj J
s
jR � JsTR ; �4:26�

Ks
R � j�Ts

R� : �4:27�
Here f s�R; t� is the size distribution function of islands of
phase s, J s

jR is the flux of atoms of the j-component onto an
island of phase s, J s

TR is the heat flux liberated during the
growth of phase s, rj is the mean concentration of the j-
component on the substrate (or in a vapor), ws is the
coefficient dependent on the island shape, qs is the chemical
reaction heat liberated during growth of islands of phase s per
molecule of phase s, jgDj

j, and jgTj are the intensities of the
fluxes of j-component and heat, respectively, and, finally, n1
and n2 are damping exponents.

A method for the solution of this type of system was
developed in papers [92, 93]. This method allows reduction of
the system of equations (4.21) ± (4.27) to a single-component
system [213]. The general solution has the form (4.12) ± (4.18)
in which all the quantities, i.e. the critical and the mean radii,
the density and the distribution functions of islands belong to
a certain phase s, while the kinetic constants A0p entering the
laws of time-dependent variation of the critical and mean
radii of islands are replaced by the generalized quantities
A0osTP. The values of these constants are given in papers [92, 93]
for all the cases of heat and mass transfer which can be
realized in the course of evolution of an ensemble of islands.
As an example, we only present the value of A0osTP for the case
where the principal mechanism is the surface diffusion of

adatoms and the heat is transferred over the substrate surface.
In this case, one obtains

A0osTR �
27Dos

s s
sn0KsblT

s
0�ws

0�2c1�y�
32
�
Dos

s n0�qs�2 ln�H=Rs
1� � KsbleffkB�Ts

0�2
� ;�4:28�

where

Dos
s �

�Xns
j�1

�pj�2 ln�lj=Rs
1�

Dajrsj1

�ÿ1
is a generalized surface diffusion coefficient for ls j 4Rs

1, Daj

is the coefficient of Brownian motion of adatoms of the j-
component, c1�y� � 2�2ÿ 3 cos y� cos3 y�ÿ1 with y as the
contact angle, and the other designations were presented
above. The solution also showed [17] that at the OR stage
Nan

PK
s�1 q

sjgsDj � jgTj and n1 � n2, i.e. the powers of sources
(sinks) of all the phases and heat are related to one another
and vary in time by one and the same law. Otherwise, the
ripening process is impaired. The equations allowing the
determination of regions in the concentration and tempera-
ture space which demonstrate the coexistence of phases were
obtained in Refs [17, 92, 93]. A schematic phase diagram of
the evolution of islands of two phases which are chemical
compounds of three components (one of which simulta-
neously enters both phases) are given as an example in Fig. 15.

Thus, in multicomponent systems the conditions of quasi-
thermodynamic equilibrium are favourable to the distribu-
tion of the substance of components in a most advantageous
way over phases and to the establishment of the regions of
phase coexistence, while the action of the surface tension
leads to a universal size distribution of islands of the existing
phases. Notice that such a distribution is only possible for low
component concentrations, when the law of mass action can
be applied to the chemical reactions proceeding in the system.

We shall now turn to OR of solid-solution islands. Islands
of such composition are mainly produced in the growth of

Q10 Q1

Q2

Q20

1

3

2

4

a

b

Figure 15. Phase diagram of the evolution of a two-phase ternary disperse

system in the projection onto the plane Q1, Q2: region 1 corresponds to

phase I, 2 to phase II, 3 to phases I and II, and 4 to the absence of phases;

lines a and b indicate phase boundaries; Q10 and Q20 are the initial

amounts of components. The arrow indicates the trajectory of the

system's evolution in the presence of sources of the second component.
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films from melts which have a `cigar' type diagram of state
(see Fig. 3b). The theory of OR of islands growing from
binary melts of this type was developed by a number of
authors (see references in [5, 11, 17]). In particular, Voorhees
[202], independently of the authors of works [102, 103],
described the ripening of new-phase nuclei in binary melts
allowing for the fact that their growth is due to both the
diffusion and the removal of the latent crystallization heat
into the melt. Notice that the hypothesis of a nonisothermal
OR was first suggested in Refs [102, 103], where the system of
equations governing the evolution of an ensemble of islands
and determining the kinetic growth diagram was derived. In
these papers it was also shown that generalized diffusion-
thermal fields are induced in the course of OR in binarymelts.
Such fields result from crystallization heat removal during the
growth of islands, which causes a temperature increase in the
system. This leads in turn to a change of equilibrium
concentrations and the diffusion coefficients of atoms as
well as to the appearance of an involved nonlinear relation
between supersaturation and supercooling on the one hand,
and the size distribution and the growth rate of islands on the
other. A more extensive consideration of these questions is
presented in monograph [17].

The OR theory for islands growing from a eutectic melt
(Fig. 3a) was formulated in Refs [103, 110]. It turned out that
in the course of evolution of ensembles of nuclei growing from
a eutectic solution-melt, the nucleus growth at the OR stage
proceeds by the thermal OR mechanism (see Section 4.3), i.e.
only due to a decrease of supercooling. The solution-melt
supercooling becomes equal for islands of both components,
and their critical sizes and the distribution functions appear to
be interrelated and similar to each other. It has been
established that among some substance constants (crystal-
lization heat, surface tension) there hold simple relations
allowing us to calculate the constants of one substance
through those of the other.

4.5 Ripening in inhomogeneous conditions
By inhomogeneous conditions we usually understand condi-
tions under which macroscopic material and heat flows may
occur on the substrate, being resulted either from substrate
inhomogeneity or nonuniformity of the flows of the substance
and heat coming to the substrate. In the paper by Lifshits and
Slezov [193], the influence of the crystal edge on the OR of an
ensemble of pores was already considered. Later, in papers
[88, 191] it was demonstrated that if new-phase nuclei are
located on the surface of a polycrystal, the grain boundaries
are ideal sinks and the island ± substrate interphase energy is
distinct on disoriented and contacting grains. Since the grain
boundary is an ideal sink, a flow of adatoms whose sources
are islands will be directed toward this boundary, i.e. near the
boundary the islands will dissolve and a region free of them
will appear. The law of time variation of the width of this
region is as follows

x�t� / t 3=8 :

The analysis of OR of islands on grains of different
orientations has shown that from some grains the substance
recondensed onto other grains whose orientation is advanta-
geous from both thermodynamic and kinetic points of view
[17, 88, 191]. The theory of melt crystallization in inhomoge-
neous conditions was constructed in paper [222]. The
finiteness of the dimensions of systems in which melts solidify

leads to the emergence of material and heat flows. While near
the boundary the melt gets supercooled at a certain instant of
time and undergoes a phase transition accompanied by a new-
phase nucleation, it can be still superheated far from the
boundary. In the layer, in which nucleation took place, the
OR stage may set-in. However, the OR zone will be under
conditions quite different from those investigated above.
These conditions are a consequence of a nonuniform
distribution of heat and material flows over the system. The
analysis carried out in [222] allowed the equation ofmotion of
a continuous new-phase crust and the size, coordinate and
composition distribution functions of the nuclei for each
phase to be obtained. For example, the equation of motion
of the crust for each phase xs�t� has the form

xs �
���������������������������

2lsasw
Lrs�1ÿ 1=p�

s
t�pÿ1�=2p : �4:29�

Here l � 2sSLTk=�LrsA1=p
p �, L is the latent crystallization

heat, rs is the density of the material of s-phase islands, and w
is the thermal diffusivity of the melt.

The late stage of the growth of islands produced on the
substrate through chemical decomposition of multicompo-
nent gases was examined in paper [223]. Such a film growth
process is typical of gas-transport deposition and MOCVD
methods. The structure and composition of films obtained by
these methods are as a rule inhomogeneous across the
substrate area. A system of equations governing the evolu-
tion of a film of the island type at the OR stage under
conditions typical of the gas-phase depositionwas obtained in
Ref. [223]. The solution of this system made it possible to
obtain the dependences of all the basic characteristics of films
of the island type.

4.6 Evolution of the properties of growing films
at the OR stage
It is a well-known fact that the properties of films are mainly
determined by their composition. It is precisely the composi-
tion that determines the majority of electrophysical, optical,
strength and other properties. To gain an insight into the
evolution of film composition so as to be able to control this
composition during film growth is one of the most important
problems of thin-film physics. It was shown in Refs [102, 103]
that at the OR stage the radius of solid solution islands and
their composition are in a one-to-one correspondence. Later,
a rigorous theory describing the evolution of phase composi-
tion of ensembles of such islands at the OR stage was
formulated in Ref. [224]. In particular, the composition
distribution function of islands j�1=rR; t� in the presence of
substance sources with 04 n < d=p has the form

j
�

1

rR; t

�
� N�t�D�t�Pp�U� : �4:30�

The average film composition changes according to the law

�r�t� � 2swrL0�1� g�
kBT�A0

pt�ÿ1=p
: �4:31�

Here s is the specific interphase energy of the island ± vapor
boundary; rL0 is the equilibrium concentration of one of the
components, for example, A (Fig. 3b) in the liquidus line, i.e.
in the liquid or vapor phase; g is the slope of the straight line
joining the liquidus and solidus lines (Fig. 3b). Figure 16
presents the dependences of the island composition on size
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and time. Paper [224] also analyzes the evolution of islands of
stoichiometric compounds and determines the function
relating the composition to the properties of films.

4.7 Film growth control at the OR stage
It has already been mentioned that independently of the
methods of obtaining films they undergo a number of stages
during growth that are typical of any first-order phase
transition [225]: nucleation of clusters or islands of a new
phase, their growth, coalescence and the related processes
(autocoalescence, mutual correlation in the position of
islands, migration, etc.), Ostwald ripening, and continuous
film formation. If a nucleation proceeds with a high super-
saturation, the density of new-phase islands and the substrate
occupancy will be high and the stages following nucleation
may fail to set-in. The composition and structure will then be
determined by the nucleation processes which, as shown
above, have an involved nonlinear character. Therefore, the
film growth parameters are most conveniently controlled at
the OR stage when the nucleation of new islands does not
happen and a continuous film has not yet formed. The control
is feasible because at this stage an ensemble of new-phase
islands interacts in a peculiar manner with generalized
diffusion-thermal fields induced on the substrate surface and
with atomic fluxes incident on it. Neither the asymptotic size
distribution of islands nor their composition depend on the
initial distribution, but they do depend on the mass and heat
transfer mechanism realized during island growth and on the
intensity of substance and heat supply onto the substrate.

The theory developed in Refs [17, 98] considers all the
presently available methods of film growth control and
suggests a unified approach to them. This approach is based
on the choice of time dependence of the temperature or the
degree of power variation in the sources of atoms coming
onto the substrate. Experimental and technical researchers
customarily keep these parameters unchanged, and if they do
change these parameters, they do it randomly. On an example
of single-component systems we shall consider the feasibility
of continuous-film structure control through the control of
the evolution processes proceeding in ensembles of islands.

Let the islands have, for example, a cylindrical form and
let the kinetics of their growth be determined by the processes
of the building-in of atoms irrespective of whether the mass
transfer is realized in the bulk phase or on the surface of a
substrate. Suppose that the islands grow under isothermal
conditions in the course of vacuum deposition. It was shown
in Ref. [17] that for the island size

�h � l0�kBT�1=2tr
n0w�2pm�1=2

; �4:32�

where �h is the average island height, l0 is the substrate lattice
parameter, n0 � 1=l 20 , and m is the mass of a single atom, the
mass transfer mechanisms will change. If the island height in
an ensemble is h < �h, the mass transfer is mainly realized
through surface diffusion, while for h > �h it occurs through
gas diffusion.

Depending on the structure and composition of the
substrate, the lifetime tr may vary within broad limits. As
follows fromEqn (4.32), this may lead to a change of the mass
transfer mechanism. So, the value of ta and, accordingly, the
height �h will be different for one and the same ensemble of
islands located on different substrates at the same tempera-
ture. For a strong adatom± substrate interaction, the quan-
tity ta and, accordingly, �h are large, while for a weak adatom-
substrate interaction the quantity �h is small. If on both
substrates the island height in an ensemble is, for example,
ha, on the substrate strongly coupled with adatoms it may be
ha < �h, in which case the surface diffusion mechanism is
operative, whereas on the substrate with weak coupling the
same height is ha > �h, i.e. the vapor diffusion mechanism is
operative. This leads to a nonuniform size distribution of
islands in an ensemble under the conditions that the substance
flow onto the substrate is constant in time, i.e. its damping
exponent n � 1. Indeed, if the surface diffusion mechanism is
realized, then sources with the exponent n � 1 are strong and
the size distribution function of islands will be determined by
the nucleation stage and the growing films will be small-block
ones. The size and composition of these blocks will be almost
identical. For the case where in an ensemble of islands the
vapor diffusion mechanism is operative, sources with the
same exponent n � 1 will be weak. This will lead, in
particular, to a distribution function of the form (4.17) and
the source density will decrease with time.

If the sources of substance are weak, then in addition to
the distribution of islands over sizes there will appear a
distribution over composition. However, if it is necessary to
obtain large-sized crystallites or to prescribe a certain island
orientation which is energetically more advantageous, one
should use weak sources of substance. There are, in principle,
no theoretical restrictions on the crystallite size since as
t!1 all nonequilibrium islands must dissolve. It is only
necessary to choose specially the sources of substance, but
this process may take much time.

The growth is similarly affected by heat sinks, because at
the Ostwald ripening stage they are related to the flows of
substance. If one and the same ensemble of islands is
located on the surface of one and the same substrate but
at different temperatures, then it follows from the results of
Ref. [17] that the mass transfer mechanism may be changed
for another one. This is associated with the strong
dependence of �h on the substrate temperature: �h / ����

T
p

ta,
where ta � t0 exp�W 0a=kBT�. At low temperatures, the
mechanism of surface diffusion in the ensemble will prevail
as a rule, while at high temperatures it will be the vapor
diffusion mechanism.

The possibilities of controlling the evolution of an
ensemble of solution-growing islands are limited because it
is difficult to regulate the flows of components which are in
the same solution as the substrate (the solution and the
substrate make up a single whole). As the solution tempera-
ture changes, the substrate temperature simultaneously
changes, while at a constant temperature a constant flow of
substance comes to the substrate since as a rule the solution
volume considerably exceeds the volume of island film. It has

R

rs0

rR Â

t

rR0

rs0

rR b

Figure 16. Dependences of the island composition on size (a) and on time

(b).
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been shown above that for the ORprocess to take place in this
case, the substrate should be rotated parallel to the solution
plane with a frequency o. For an extensive presentation of
this method see Refs [17, 226]. For the growth of films from
melts one should bear in mind that the change in the island
growth mechanism is also affected by the substrate thickness
[17, 109].

More detailed conclusions can be found in Refs [5, 11, 17,
109, 226]. The results on the control of film growth from
binary and multicomponent melts are also presented in these
works. Some peculiarities of the growth of capillary and
layer-by-layer films were considered in Ref. [229] and the
possibilities of film growth control by varying the inert gas
pressure in the growth chamber were analyzed in Ref. [227].
The regions of phase coexistence in multicomponent disperse
systems on the surfaces of solid substrates, formed in the
course of island film evolution, were determined in Refs [17,
224, 226]. Such an approach can be used to obtain films of
semiconducting and superconducting materials of a pre-
scribed chemical composition.

The time of continuous structure formation and thick-
nesses of continuous films as functions of substance flux
intensities are given in Refs [17, 93, 98, 228].

4.8 Comparison with experiment
The first correct comparison of theoretical and experimental
results was made in Ref. [228] on an example of the evolution
of island gold films on the (100)-surface of an NaCl single
crystal. As a result, the mass transfer mechanism was
determined and the coefficient of gold adatom surface
heterodiffusion was found. Later, the OR of single-compo-
nent island filmswas investigated bymany researchers [17, 88,
191]. Owing to the results obtained the coefficients of surface
heterodiffusion were determined for different substances on
various substrates.

Experimental studies of the evolution of ensembles of
islands at the ripening stage do not only provide unique
information on the mechanisms of mass transfer over the
surface and such kinetic constants as diffusion coefficients
and coefficients of boundary kinetics, but also allow the
prediction of specific technological conditions for obtaining
continuous films of a given structure and composition.

In the series of works referred to in papers [5, 11, 17],
experiments were carried out investigating the OR of islands
of a number of multicomponent A2B6 compounds and, in
particular, films of cadmium selenide (CdSe), cadmium oxide,
cermets (Cr2Si3 and SiO2), and titanium nitride (TiN).
Moreover, the experimental results obtained for the con-
densation of films of A4B6 compounds, in particular, lead
telluride (PbTe) were processed in Ref. [229], and the OR of
multicomponent islands of compounds formed in the con-
densation of high-temperature superconducting films were
examined in Ref. [230]. Figure 17 demonstrates the experi-
mental and theoretical curves of the time variation of the
mean height and the mean radius of islands. A detailed
comparison of theoretical and experimental size distribution
functions of islands was carried out in Ref. [17], where
comprehensive information on the methods of obtaining
island films of these compounds and the processing of the
experimental results of research at the OR stage was also
presented.

As concerns the experimental investigation of the OR of
nuclei growing from solution-melt, the ripening of new-phase
nuclei in bulk single-component melts was first experimen-

tally established by Voorhees and Cliksman [201] for the
example of white phosphorus �a-P� crystallization. They
confirmed the law of time-dependent variation of the mean
radius of new-phase nuclei, namely, R3 / t, found in Ref.
[107]. The ripening of ensembles of islands in solutions-melts
were examined in Ref. [231] for the example of solid-solution
Bi12TixSi1ÿxO20 film growth. In particular, all stages of film
growth from this solution, from nucleation to continuous-
structure formation, were analyzed. The analysis was carried
out on singular, vicinal, and atomically rough facets of
Bi12SiO20 single crystals possessing cubic symmetry. The
analysis of the results obtained for singular facets of
Bi12SiO20 single crystals showed that at a certain stage the
newly appeared solid-solution islands begin ripening. The
theoretical conclusion that the ripening of ensembles of
islands growing from large solution-melt volumes can only
proceed in diffusion layers with a thickness dD satisfying the
relation dD 5 �R, was confirmed in Ref. [231]. For example,
the average sizes of solid-solution Bi12TixSi1ÿxO20 islands
were of the order of �R � 10ÿ4 m and their ripening was only
observed for the same value of the diffusion boundary layer
thickness, which corresponded to a substrate rotation
frequency of o � 0:3 sÿ1. If the latter changed so that
dD < �R or dD 4 �R, then no Ostwald ripening was observed.

5. The formation and growth of continuous
structures

The presently available film growth methods can condition-
ally be divided into three large groups. The first includes film
growth from the gaseous phase, namely, ion-plasma deposi-
tion, the MBE method, laser sputtering, vacuum deposition
from vapor, gas-transport reactions, and the MOCVD
method [17]. The second group involves methods of film
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height (b) of CdSe islands at the OR stage.
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growth through an intermediate solid-phase layer, i.e. solid-
phase epitaxy [232]. The methods of film growth from
solutions-melts, i.e. liquid-phase epitaxy, belong to the third
group [17, 233]. The theoretical arguments described above
refer to all three groups and provide insight into the growth of
films of any systems, obtained by any of the above-mentioned
methods.

The prime concern of thin-film technology is obtaining
continuous film structures{ of a prescribed composition,
thickness and structure. Depending on the sphere of applica-
tions, the films may be amorphous, polycrystalline, or
epitaxial (single-crystal). Polycrystalline films are as a rule
grown on nonorienting substrates, or on orienting ones but
under conditions far from equilibrium. To obtain amor-
phous, i.e. frozen metastable structures, special methods of
creating high supersaturations or supercoolings should be
employed. The question of what the principal orienting
growth factor is remains open. It is believed that a necessary
condition for the growth of oriented structures is closeness of
film and substrate lattice parameters (it typically suffices that
the difference between them should not exceed 15%). This
condition is however not at all sufficient because new-phase
islands participate in various evolutionary processes. It is
rather difficult to decide which of them exerts a decisive
influence on orientation. Below we shall consider only a few
of the models of the oriented growth.

5.1 Layer-by-layer growth of continuous structures
Beginning with the classical work [56] which laid the
foundation of the TLK-model (terrace, ledge, kink), the
studies devoted to crystal growth and those concerned with
film nucleation go in parallel and develop independently of
each other. If the former mainly investigate the motion of
steps, the stability of crystal surfaces, etc. (assuming that the
nuclei initiating crystal growth are initially present on the
surface), the latter largely deal with the new-phase nucleation
and the further evolution of the nuclei.

Such a difference is first of all due to the fact that crystals
grow from their own vapor, solution or melt, while film
growth proceeds on foreign substrates. Depending on the
growth conditions, the time within which a continuous film is
formed, the substrate occupancy, and film thickness are
estimated either by the Kolmogorov formula [75] or, if the
film coalescence proceeds at the OR stage, by the formulae of
Refs [17, 93]. After a substrate has been covered with a layer
of film material, its growth will be governed by the same laws
as for crystal growth [3, 61]. If the surface of new-phase blocks
is a smooth close-packed single-crystal surface, a subsequent
film layer will again be formed owing to nucleation. Later
these nuclei will grow and occupy the surface layer by layer.
Each block here plays the role of a peculiar crystal seed. There
are many such seeds on the surface, and therefore an oriented
growth may be violated at high supersaturations. Block
boundaries, screw surface dislocations or other linear defects
may serve as sources of two-dimensional nucleation. For
oriented growth it is necessary that no new nuclei appear and
that the film growth be realized by atoms successively
adjoining these defects. If the film surface is an atomically
rough layer similar to a rough crystal surface, then each point
of such a surface may be a place of atomic attachment, and
the film will grow in unfavourable conditions as well.

Original methods of obtaining highly oriented films were
proposed in Ref. [234]. Such films usually grow at heightened
temperatures (to provide appropriate adatom mobility) in
conditions close to equilibrium. So, CdTe films typically grow
at a substrate temperature of the order of 800 K. But the
authors of Ref. [234] describedmethods of obtaining epitaxial
films at a temperature of 228 K. A variation of substrate
temperature in both directions led to a worsening of the film
structure. In paper [235], such an orientation was assumed to
be caused by the motion of islands as a whole due to the
soliton mechanism of atomic transport investigated in Ref.
[118]. There exists however an alternative explanation
associated with the two-dimensional liquid layer on the
substrate surface, which is formed either immediately or
thanks to the appearance of liquid CdTe drops directly at
the substrate surface. Heightening the substrate temperature
results in the destruction of this two-dimensional layer, and
its lowering to the creation of a notable supercooling and a
violation of the OR stage. With a further lowering of
temperature amorphous films begin to grow.

5.2 The growth on vicinal surfaces
It was established in Refs [6, 231, 236 ± 238] that linear defects
have an appreciable effect on the mechanism of heteroepitax-
ial film growth. For instance, in paper [231], for the example
of Bi12TixSiiÿ1O20 it was demonstrated that the film growth
mechanism substantially changes depending on the substrate
face orientation. It was associated there with the presence of
steps on the substrate that have an orientation different from
that of the singular facet. Under certain conditions, these
steps led to the formation of cigar-shaped structures which
exert a great influence upon further oriented growth of the
film. Similar effects are also observed for other materials, in
particular, in the growth of YBa2Cu3 on vicinal MgO [236].

The assertion that it is the substrate relief elements and, in
particular, steps that present orienting centres of growing film
structures has been qualitatively discussed in many papers,
and inRef. [239] this questionwas investigated quantitatively.
The main ideas suggested there are as follows. Since the
vicinal surface is a train of parallel steps separated by terraces
of equal widths, the atoms deposited on this surface are
adsorbed near steps with a greater probability than on the
terraces. Then new-phase islands form with their density on
the steps largely exceeding that on the smooth substrate areas,
because a step is an effective adatom sink and because steps
and other defects typically suppress the work on the
formation of a critical nucleus [6].

We note that the nucleation on a step is strongly
dependent on the step height. An enlargement of the step
height causes not only more intense nucleation on it, but an
increase of its capacity to orient the new phase. In particular,
the minimum step height capable of orienting a growing
condensate was estimated in a number of papers [4, 6, 12].
The estimate coincides in the order of magnitude with the
height of the critical nucleus. Therefore, one may assume to a
first approximation that if the size of the critical nucleus on a
step does not exceed (1 ± 2) h, where h is the step height, the
growing condensate will be oriented (the nucleation rate on
smooth substrate regions should be sufficiently low). After
that, the islands located at the steps coalesce to form
decorated steps, which in Ref. [239] are called `cigars'
because such formations are extended along the initial
substrate steps. These `cigars' are aligned with the substrate
orientation. If now the external sources of atoms are so

{ If one needs island structures for some purpose, the film growth should

be terminated at this particular stage.
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chosen that all the nonoriented islands on the terraces
dissolve and cigar-shaped islands grow, then a layer-by-layer
film growth can be realized in full accord with the layer-by-
layer growth of single crystals. Such calculations were carried
out in Ref. [239], where the necessary conditions for
realization of this growth mechanism were found.

In most papers, the behaviour of a train of steps is
described in terms of the Mullins model [3, 61], in which
each point of the crystalline surface is assumed to be a source
or a sink of atoms. These theoretical arguments may only be
applied to nonsingular surfaces which at the elementary level
are atomically rough (see Section 2.1). The variation of the
macrorelief of these surfaces is realized by the normal growth
mechanism in exactly the same manner as the Ostwald
ripening of unfaceted islands. If the crystal surfaces are
vicinal, the Mullins theory is inapplicable. This fact was first
mentioned in Ref. [240], but with some mathematical errors.
In Ref. [239], solutions of the step-train evolution equations
were found in the most general form, which described both
the film and crystal growth. Under certain conditions, the
cigar density turns out to be governed by a Burgers type
equation

qr�1�

qx
ÿ 2ar�1�

qr�1�

qw
ÿD0

q2r�1�

qw2
� 0 ; �5:1�

where r�1� is the first term of the expansion of the dimension-
less cigar density r � rc=r0 in a power series of a small
parameter, r0 is the initial position of the density [239], x
and w are dimensionless variables related to the time t and the
coordinate x, a is a quantity depending on the supersatura-
tion, D0 � w tanh r, r � 1=2r0l0, l0 �

����������
Datr
p

, and Da is the
diffusion coefficient of adatoms. For small D0 values, a
substantial contribution to the amplitude of r can be made
by the next term of the expansion of r in a power series of a
small parameter [239], the dispersion effects playing a more
significant role than the dissipative ones. In this case, the cigar
density is governed by the Korteweg ± de-Vries equation

qr�1�

qx
ÿ 2ar�1�

qr�1�

qw
ÿ b2

q3r�1�

qw3
� 0 ; �5:2�

where b � �r=2�3=2 coshÿ1r.
The analysis carried out in Ref. [239] showed that the

variation in the relief of a growing film (crystal) is completely
determined by the initial conditions. Depending on the initial
conditions and some constants, triangular shock waves,
kinks, solitons, knoidal waves, etc. can be originated. After
some time, all of them begin smearing under the action of
diffusion. The very fact of the appearance of a background
solution and solitons, as well as their number also depend on
the initial conditions. Nevertheless, in the overwhelming
majority of cases the film roughness first increases during
growth and then begins decreasing, whichmakes this quantity
controllable. This approach substantially generalizes the
kinematic theory [3, 61], in which the flux of steps was
assumed to be dependent on the step density only. But it
follows fromRef. [239] that actually the step flux also depends
on the first and second derivatives of the step density.

On the basis of this approach, themethod of growingwell-
oriented films of various compounds, in particular, diamond-
like ones, was proposed in Ref. [239]. For this purpose, the
atomic flux intensity should first be kept sufficiently high to
provide new-phase nucleation on steps, and then at

t1 < t < t2 the intensity should decrease in a power-law
manner: g�t� � g0t

ÿk � g0 t
ÿ�p�1�=2p, after which the quantity

g�t� may be fixed at a constant level (the level should be low
enough to avoid fresh nucleation). Figure 18 presents the
general form of the law of variation of a flux of deposited
atoms under which the layer-by-layer mechanism of contin-
uous film growth can be operative.

5.3 The evolutionary processes in continuous films
Various processes may proceed inside continuous films under
the action of external factors because the substrate ± film
system is essentially nonequilibrium. This nonequilibrium
state is a consequence of stresses in the film and substrate. In
the presence of an appropriate mass transfer mechanism these
stresses will relax, which causes the loss of film continuity [88,
241].Moreover, in polycrystalline films with grains stressed in
different ways, recrystallization may take place. A rigorous
theory of such processes has not yet been formulated, but
nevertheless all these processes may be referred to first-order
phase transitions in one way or another.

If a film is a solid solution, inside it there may occur
processes of decay into components accompanied by new-
phase nucleation and further evolution of the nuclei, which
will proceed exactly by the laws described above, and one
should only choose appropriately the corresponding coeffi-
cients. Notice that solid-phase reactions with the formation
of new compounds may develop in multicomponent film
systems. If the reactions proceed with the release of gas, the
film will contain pores [242].

6. Conclusions

We have presented all the basic modern theoretical concepts
and experimental results describing both the new-phase
nucleation and further evolution of nuclei, as well as growth
processes of films as a whole. The material presentation was
based on the classical and field approaches allowing a unified
standpoint in the investigation of processes on the substrate
surface and in the surrounding volume upon film deposition
from the gaseous, liquid, amorphous, and solid phases. The
processes of film degradation due to elastic stresses were not
considered. The influence of charges and electromagnetic
effects upon thin-film growth was also beyond the scope of
this paper because the corresponding theoretical models are
presently in their early stages. Future progress in both the

t1 t2 t

g0
g

Figure 18. General form of the law of atomic flux variation making the

layer-by-layer continuous-film growth mechanism possible.
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theoretical description and practical application obviously
lies in this particular field. The theory of nucleation of
multicomponent systems requires further development of it.
The formulation of a rigorous theory allowing the composi-
tion of growing films to be calculated in advance is still far
from completion. The theory of vapor ± liquid ± crystal phase
transition including intrinsic symmetry variations should be
thoroughly investigated. Of particular interest is an account
for the cause of the appearance of such diversified structures
during film growth from eutectic melts. The approaches
presented in this paper constitute the initial stage of creation
of a self-consistent conception of this phenomenon.

It can be said that the front of studies of the physics of
surfaces and surface new-phase nucleation is exceedingly
wide. The authors hope that the present publication will
help the reader to gain insight into these processes and to
better and more quickly comprehend the range of questions
described.

This work was sponsored by the Russian Foundation for
Basic Research (grants Nos. 96-03-32396, 98-03-32791) and
the `Integration' Foundation (grant No. 987).
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