Rev.Adv.Mater.Sci. (RAMS)
No 2, Vol. 18, 2008, pages 169-172


J. Eckert, M. Calin, P. Yu, L.C. Zhang, S. Scudino and C. Duhamel


Nanostructured or partially amorphous Al-based alloys are attractive candidates for advanced high-strength lightweight materials. The strength of such materials is often 2 - 3 times higher than the strength of commercial crystalline alloys. Further property improvements are achievable by designing multi-phase composite materials with optimized length scale and intrinsic properties of the constituent phases. Such alloys can be prepared by quenching from the melt or by powder metallurgy using mechanical attrition techniques. This paper focuses on mechanically attrited Al-based powders containing amorphous or nano-crystalline phases, Al-based MMCs containing metallic glass reinforcement and on their consolidation into bulk specimens. Selected examples of mechanical deformation behavior are presented, revealing that the properties can be tuned within a wide range of strength and ductility as a function of size and volume fraction of the different phases.

full paper (pdf, 60 Kb)